帮助 关于我们

返回检索结果

对流扩散方程的绝对稳定高阶中心差分格式
TWO ABSOLUTE STABILITY,HIGHER-ORDER CENTRAL DIFFERENCE SCHEMES FOR THE CONVECTIVE-DIFFUSION EQUATION

查看参考文献19篇

高智  
文摘 将作者提出的数值摄动算法改进为区分离散单元内上游和下游并分别对通量进行高精度重构的双重数值摄动算法,与原(单重)摄动算法相比,双重摄动算法既提高了格式精度又明显扩大了格式的稳定域范围,利用双重摄动算法,即分别利用上游和下游基点变量的摄动重构将高阶流体力学关系及迎风机制耦合进二阶中心格式之中,由此构建了对流扩散方程的对网格Reynolds数的任意值均稳定(绝对稳定)高精度(四阶和八阶精度)三基点中心TVD差分格式,通过解析分析以及3个算例计算证实了构建格式的优良性能;3个算例包括一维线性、非线性(Burgers方程)和二维变系数对流扩散方程,数值计算表明:构建的格式在粗网格下不振荡,构建格式在粗网格时的最大误差L∞和均方误差L2与二阶中心格式在细网格时的相应误差一致,对线性方程,构建格式在细网格下可达到L2精度阶
其他语种文摘 In this paper the numerical-perturbation algorithm presented by the author is transformed from single perturbation reconstruction into dual one,in which the perturbation reconstruction of flux is performed by using respectively upstream and downstream nodes in a discrete element. Compared with the original single reconstruction using all nodes in the discrete element, dual perturbation reconstruction of flux can cut off propagation of convective anti-diffusion unstable information between upstream and downstream nodes and can couple both the high-order fluid dynamic relations and "upwind biasing" with the second order central difference scheme. Therefore, the accuracies of reconstructed schemes are raised and the stability range of reconstructed scheme is enlarged greatly. Two absolute stability, fourth-and eighth-order accurate central difference schemes (call them DPCS, for brevity)for the convective-diffusion equation are obtained. In the case of one dimension,DPCS are TVD schemes with order higher.than second and they are nonoscillatory schemes for any values of grid Reynolds number. DPCS are reconstructed schemes of the classical second order central scheme coupling with both fluid dynamics effects and "upwind biasing" and do not introduce any artificial numerical dissipation. DPCS's excellent properties are proved by analyses and three computational examples, which include one-dimensional linear and nonlinear and two-dimensional convective-diffusion equations. As to calculation of Burgers equation, the well-known second order central difference scheme (2-CDS)oscillates and diverges on coarse grids, while the fourth-and eighth-order accurate DPCS do not oscillate. Both maximum error L∞ and mean square error L_2 of fourth-and eighth-order DPCS on coarse grids (grid number N = 80,160) are approximately equal to those of 2CDS on fine grids (N = 320). From here we see that the present fourth-and eighth-order DPCS can capture discontinuities with high resolution. As to calculation of one-dimensional linear convective diffusion equation 2-CDS oscillates on coarse grids, while 4-DPCS and 8-DPCS do not oscillate;all 2-CDS,4-DPCS and 8-DPCS can reach to individual L2 0rder-of-accurate on fine grids (grid' number N ≥ 320); L_2 errors of 4-DPCS and 8-DPCS aregreatly less than those of 2-CDS on fine grids
来源 力学学报 ,2010,42(5):811-817 【核心库】
关键词 计算流体力学 ; 数值摄动算法 ; 有限差分方法 ; 对流扩散方程
地址

中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金资助项目
文献收藏号 CSCD:4033897

参考文献 共 19 共1页

1.  Ferziger JH. Computational Methods for Fluid Dynamics.3rd edn,2002 被引 1    
2.  陶文铨. 数值传热学,1988 被引 570    
3.  李新亮. 高精度复杂流动数值模拟软件Hoam-Open CFD的开发与应用. 高性能计算发展与应用,2007,20(3):52-58 被引 4    
4.  姚征. CFD通用软件综述. 上海理工大学学报,2002,24(2):137-144 被引 46    
5.  Laney CB. Computational Gasdvnamics,1998 被引 1    
6.  Harten A. High resolution schemes for hyperbolic conservation laws. J Comput Phys,1983,49:357-393 被引 204    
7.  Liou MS. Ten years in the Making-AUSM Family. AIAA Paper 2001-2521 被引 1    
8.  Liu XD. Weihted essentially nonoscillatory schemes. Jour Comput Phys,1994,115:200-212 被引 238    
9.  Jameson A. Analysis and design of numerical schemes for gasdynamics I:artificial diffusion, upwind biasing, limiters and their effects on accuracy and multigrid convergence. Int J Comp Fluid Dyn,1994,4:171-218 被引 2    
10.  张涵信. 无波动、无自由参数的耗散差分格式. 空气动力学学报,1988,6(2):143-165 被引 166    
11.  Wu HM. UENO-A class of ENO schemes constructed in unified way. Proceedings of Beijing Workshop on Computational Fluid Dynamics Vol 6. Institute of Mechanics, Chinese Academy of Science,1994:171-189 被引 1    
12.  陈国谦. 对流扩散方程的迎风数学变换和差分格式. 力学学报,1991,23(5):542-553 被引 2    
13.  Chen GQ. A perturbational h4 exponential finite difference scheme for the convective diffusion equation. J Comput Phys,1993,104(1):129-139 被引 15    
14.  陈国谦. 对流扩散方程的指数型摄动差分法. 计算物理,1993,10(2):197-206 被引 7    
15.  Gao Zhi. An higher-order accurate upwind compact difference scheme for the convective diffusion equation. Proc of Asian Workshop on Computational Fluid Dynamics, Mianyang, China,1994:18-24 被引 1    
16.  Gao Zhi. A perturbational exact numerical solution scheme for the convective diffusion equation. Proc of 4th Asian Conference on Computational Fluid Dynamics, Mianyang, China,2000:554-560 被引 1    
17.  高智. 对流扩散方程的摄动有限体积(PFV)方法及讨论. 力学学报,2004,36(1):88-95 被引 12    
18.  Gao Zhi. Perturbation finite volume method for convective-diffusion integral equation. Acta Mechanica Sinica,2004,6:580-590 被引 7    
19.  代民果. 同位网格摄动有限体积格式求解浮力驱动方腔流. 力学学报,2006,38(6):733-740 被引 7    
引证文献 3

1 朱可 对流扩散方程QUICK格式的数值摄动高精度重构格式 力学学报,2011,43(1):55-62
被引 2

2 高智 用物理黏性构建高阶不振荡对流扩散差分格式 力学学报,2012,44(3):505-512
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号