帮助 关于我们

返回检索结果

若尔盖高原湿地甲烷排放的时空异质性
Spatiotemporal variation of methane emissions from alpine wetlands in Zoige Plateau

查看参考文献61篇

陈槐 1   高永恒 2   姚守平 1   吴宁 1   王艳芬 3   罗鹏 1   田建卿 4  
文摘 集中于北美落基山高山湿地甲烷排放的零星报道远不能解析全球高山湿地甲烷源强。因此,世界范围内其他区域高山湿地甲烷排放的研究对于合理估计全球高山湿地甲烷源强,意义重大。采用静态箱-气相色谱法,基于3种典型湿地类型的甲烷排放数据,认为若尔盖高原湿地生长季甲烷的平均排放量为4.69mgCH_4m~(-2)h~(-1)。同时根据2a数据,初步分析了甲烷通量及其对环境因素和生物因素的响应特征,结果表明:(1)甲烷排放昼夜变化具有双峰模式(主峰出现在15:00,次峰出现在06:00),可由土壤温度以及植物气孔开启来解释。(2)若尔盖湿地甲烷排放季节动态较为典型,即在7月份或8月份出现排放高峰,冬季甲烷排放较少。生长季,对3类群落类型,表面温度与甲烷排放显著相关(r~2=0.55,P〈0.05,n=30),地表水位和植物群落高度与甲烷排放相关性更为显著(r~2=0.32,0.61,P〈0.01,n=30)。分析认为该季节节律是由温度以及植物生长状况直接影响的,而水位则是使该节律发生波动的原因(高原气候)。(3)群落尺度下,物候学上相当重要的两个时期,甲烷排放通量均有较高的空间变异(植物生长高峰变异系数为38%,积雪融化高峰为61%)。通过逐步回归线性分析,发现植物生长高峰期,地表水位和群落高度是影响甲烷排放空间差异的主要因素(r~2=0.43,0.59,P〈0.01,n=30)。(4)景观尺度下,生长季,景观尺度下甲烷排放有较大的空间变异,湖滨湿地甲烷平排放量最高为11.95mgCH_4m~(-2)h~(-1),其次为宽谷湿地,其排放量为2.12mgCH_4m~(-2)h~(-1),河岸湿地表现为甲烷吸收,其吸收量为0.007mgCH_4m~(-2)h~(-1)。地表水位、植物地上生物量以及植物高度能够很好地解释甲烷排放的景观差异。
其他语种文摘 Zoige Plateau(av.3400 m a.s.l.),located in the eastern edge of Qinghai-Tibetan Plateau(av.4000 m a.s.l.),is a complete and orbicular plateau surrounded by a series of alpine mountains(av.4000 m a.s.l.),covering an area of 2.8×104 km2.Due to the unique alpine climate of the plateau,characterized by cold-long winters alternating with cool-short summers with relatively high precipitation,these alpine wetlands undergo a continuous methane emission through the frozen soil,and then an impulse of methane emission during and immediately following the soil thawing.It was found that methane emission was well coupled with the growing rhythm of plants.However,the magnitude,temporal,and spatial patterns of methane fluxes in alpine wetlands on Zoige Plateau are still highly uncertain.To refine the actual global methane budget of alpine wetlands,methane fluxes were measured among three wetland landscapes at the Zoige National Wetland Reserve.Based on such measurements,it was roughly estimated that mean methane flux from Zoige Plateau was 4.69 mg CH_4 m~(-2) h~(-1) in the growing season.A special diurnal variation pattern of methane emission was observed that there was two emission peaks:one minor peak occurred at 06:00 and the major one at 15:00.In this study,soil temperature of 5cm depth was considered as the key factor to explain the higher peak at 15:00.After clipping,the methane flux from the Eleocharis valleculosa and Carex muliensis sites were dropped substantially by 47.1% and 63.2%,respectively.The stomata whose opening and closure were under the control of light(PAR)should be major vents for methane efflux.Therefore,one hour after sunrise,the stomata opened substantially and methane efflux reached a small climax at 06:00 because a lot of methane accumulated at night.There were clearly seasonal patterns of methane flux in different environmental types during the growing and non-growing seasons.In the growing season,the main maximum values of methane flux were found in July and August,except for a peak value in September in CM sites.In the non-growing season,the similar seasonal variation pattern was shared among all of three sites,in which the methane emissions increased from February to April.It was found that the determining factors in the growing season were ground surface temperatures,standing water depths and plant community heights,while in the non-growing season,ice thickness was found most related to flux.Different environmental types within the wetland also influenced the seasonal pattern of methane flux.There were high spatial variations among environmental types and for all spots in the two phenological seasons.In the peak growing season,coefficients of variation were on the average 38% among environmental types and 57% within environmental types,in the quickly thawing season,coefficients of variation were on the average 61% among environmental types and 77% within environmental types.The key influencing factors were standing water depths and plant community height in the peak growing season,while in the quickly thawing season,the redox potentials were best related with the methane emissions due to the complex of the water phases(r~2=0.72,P〈0.05).Landscape types had significant impacts on methane fluxes.Standing water depth was the major factor to explain the landscape variation of methane flux,while vegetation characteristics were also valuable to predict methane flux from Zoige Plateau.
来源 生态学报 ,2008,28(7):3425-3437 【核心库】
关键词 青藏高原 ; 温室气体通量 ; 景观 ; 时间动态 ; 空间动态 ; 地表水位 ; 植物高度
地址

1. 中国科学院成都生物研究所, 四川, 成都, 610041  

2. 中国科学院成都山地灾害与环境研究所, 四川, 成都, 610041  

3. 中国科学院研究生院资源与环境学院, 北京, 100049  

4. 中国科学院生命科学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1000-0933
学科 水产、渔业
基金 中国科学院知识创新工程重大项目 ;  国家科技支撑计划项目 ;  国家自然科学基金 ;  国家自然科学基金 ;  中国科学院西部之光人才培养计划 ;  中国科学院西部之光人才培养计划
文献收藏号 CSCD:3351782

参考文献 共 61 共4页

1.  Houghton J T. Climate Change 2001:The Scientific Basis,2001 被引 75    
2.  Rodhe A L. A comparison of the contribution of various gases to the greenhouse effect. Science,1990,248:1217-1279 被引 158    
3.  Forster P. Changes in Atmospheric Constituents and in Radiative Forcing. Climate Change 2007:The Physical Science Basis,2007 被引 2    
4.  Lelieveld J. Climate effects of atmospheric methane. CHEMOSPHERE,1993,26:739-768 被引 21    
5.  Cicerone R L. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles,1988,2:716-722 被引 1    
6.  Johnson H S. Human effects on the global atmosphere. Annual Reviews of Physical Chemistry,1984,35:481-505 被引 1    
7.  Khalil M A K. Atmospheric methane:an introduction. Atmopheric Methane:Its Role in the Global Environment Khalil,2000:1-8 被引 1    
8.  Lelieveld J. Changing concentration lifetime and climate forcing of atmospheric methane. Tellus,1998,50:128-150 被引 47    
9.  Hirota M. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology&Biochemistry,2004,36(5):737-748 被引 67    
10.  Hein R. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles,1997,11:43-46 被引 11    
11.  Houweling S. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Jounal of Geophysical Research,1999,104:22129-22145 被引 1    
12.  Middelburg J J. Methane distribution in European tidal estuaries. Biogeochemistry,2002,59:95-119 被引 12    
13.  Keppler F. Methane emissions from terrestrial plants under aerobic conditions. Nature,2006,439:187-191 被引 69    
14.  Bubier J. A comparison of methane flux in a boreal landscape between a dry and a wet year. Global Biogeochemical Cycles,2005,19:1023 被引 10    
15.  Yu J B. Enhanced net formations of nitrous oxide and methane underneath the frozen soil in Sanjiang wetland northeastern China. Journal of Geophysical Research-Atmospheres,2007,112(7) 被引 4    
16.  Verma A. Methane emissions from a coastal lagoon:Vembanad Lake West Coast. India CHEMOSPHERE,2002,47:883-889 被引 9    
17.  Smith L K. Methane emissions from the Orinoco River floodplain. Venezuela Biogeochemistry,2000,51:113-140 被引 11    
18.  Purvaja R. Plant-mediated methane emission from an Indian mangrove. Global Change Biology,2004,10:1825-1834 被引 11    
19.  Chimner R A. Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Candian Journal of Botany,2003,81:477-491 被引 4    
20.  Wickland K P. Carbon gas exchange at a southern Rocky Mountain wetland 1996-1998. Global Biogeochemical Cycles,2001,15:321-335 被引 63    
引证文献 29

1 王德宣 若尔盖高原泥炭沼泽二氧化碳,甲烷和氧化亚氮排放通量研究 湿地科学,2010,8(3):220-224
被引 32

2 牛佳 若尔盖高寒湿地干湿土壤条件下微生物群落结构特征 生态学报,2011,31(2):474-482
被引 38

显示所有29篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

iAuthor 链接
王艳芬 0000-0001-5666-9289
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号