帮助 关于我们

返回检索结果

青藏高原东南缘贡嘎山地区大气总汞时间序列分析及其影响因子
Annual time-series analyses of total gaseous mercury measurement and its influence factors in the Gongga Mountain on the south-eastern fringe of the Tibetan Plateau, China

查看参考文献56篇

朱万泽 1   付学吾 2   冯新斌 2   Julia Y.Lu 3  
文摘 使用Tekran 2537A大气汞自动分析仪对中国科学院贡嘎山高山生态系统观测试验站磨西基地站(102°72'E 29°92'N)进行了为期1a的大气总汞(TGM)高时间分辨率观测.研究区域的平均TGM浓度为(4±1.38) ng m~(-3)(N=57310),高于全球大气总汞背景值1.5~2.0 ng m~(-3).不同季节表现出相似的日变化模式,即白天相对夜晚具有较高的TGM浓度,最大TGM浓度出现在中午,最小值出现在日出前,春季和夏季日变化高峰值出现时间比秋季和冬季早1~2h.以冬季TGM浓度最高,为(6.13±1.78) ng m~(-3);夏季最低,为(3.17±0.67) ng m~(-3).观测期间不同风向间TGM浓度无显著差异.相关分析表明,TGM浓度与温度、饱和水汽压、降水量、紫外辐射、大气压有显著相关性,这种相关性随季节而变化.贡嘎山地区大气汞浓度主要受局地源的影响和调节.
其他语种文摘 Long-term monitoring programs of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and they could also provide valuable information about the impact of emission controls on the global budget of atmospheric mercury,their observance and an insight into the global mercury cycle.Several highly-time resolved mercury monitoring stations have been constructed in the North America and Europe with the aid of fast advancement in automatization techniques of Hg determination since the mid-1990s.China is believed to be an increasing atmospheric mercury emission source;however,only a few measurements of mercury,to our knowledge,have been done in ambient air of China.Measurement of highly-time resolved atmospheric mercury concentrations have been measured at Moxi Base Station(102°72'E 29°92'N,1640m a.s.l.)of the Gongga Alpine Ecosystem Observation and Experiment Station of Chinese Academy of Sciences(CAS)during the period of May 2005-June 2006 by using a set of Automatic Atmospheric Mercury Speciation Analyzers(Tekran 2537A).Measurements were carried out with a time resolution of every 5 or 15 minutes.The overall average TGM covering the measurement periods was(4±1.38)ngm~(-3)(N=57310),which is higher than the global background level of approximately 1.5-2.0 ng m~(-3).The measurements in all seasons showed a similar diurnal change pattern with a high concentration during daytime relative to nighttime and maximum concentration near solar noon and minimum concentration immediately before sunrise.The presence of diurnal TGM peaks during spring and summer is found earlier than during fall and winter.When divided seasonally,it was found that the concentrations of TGM were highest in winter with(6.13±1.78)ngm~(-3) and lowest during summer with(3.17±0.67)ng m~(-3).There are not significantly TGM differences between each wind sectors during each season.Whereas Hg generally exhibited significant correlations with such parameters as temperature,saturated vapor pressure,precipitation,ultraviolet radiation(UV)and atmospheric pressure during the whole measurement stage,its relationship varied seasonally.Our results suggest that the local or regional sources(the abundant geothermal activity such as thermal spring,anthropogenic source processes and changes in meteorological conditions)regulate and affect Hg behavior in the study area.
来源 生态学报 ,2007,27(9):3727-3737 【核心库】
关键词 大气总汞 ; 日变化 ; 季节变化 ; 气象因子 ; 贡嘎山
地址

1. 中国科学院成都山地灾害与环境研究所, 成都, 610041  

2. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002  

3. Department of Chemistry and Biology, Ryerson University, Canada

语种 中文
文献类型 研究性论文
ISSN 1000-0933
学科 普通生物学;环境科学基础理论
基金 中国科学院野外台站基金项目
文献收藏号 CSCD:2927782

参考文献 共 56 共3页

1.  Pai P. Simulation of the regional atmospheric transport and fate of mercury using a comprehensive Eulerian model. Atmospheric Environment,1997,31:2717-2732 被引 2    
2.  Schroeder W H. Atmospheric mercury-an overview. Atmospheric Environment,1998,32(5):809-822 被引 146    
3.  Ebinghaus R. Long-term measurements of atmospheric mercury at Mace Head Irish west coast between 1995 and 2001. Atmospheric Environment,2002,36:5267-5276 被引 11    
4.  Lamborg C H. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimca et Cosmochimica Acta,2002,66(7):1105-1118 被引 29    
5.  Slemr F. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature,1992,355:434-436 被引 18    
6.  Pirrone N. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment,1996,30:2981-2987 被引 21    
7.  Kim K H. Some insights into short-term variability of total gaseous mercury in urban air. Atmospheric Environment,2001,35(1):49-59 被引 8    
8.  Slemr F. Trends in atmospheric mercury concentrations at the summit of the Wank Mountain Southern Germany. Atmospheric Environment,1998,32:845-853 被引 6    
9.  Mukherjee A B. Assessment of atmospheric mercury emissions in Finland. Science of the Total Environment,2000,259:73-83 被引 4    
10.  Hylander L D. Global mercury pollution and its expected decrease after a mercury trade ban. Water,2001,125:331-344 被引 1    
11.  Fitzgerald W F. Is mercury increasing in the atmosphere?The need for an atmospheric mercury network(AMNET). Water,1995,80:245-254 被引 1    
12.  Kim K H. The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea. Atmospheric Environment,2000,34:3337-3347 被引 3    
13.  Nakagawa R. Geographical distribution and background levels of total mercury in the air in Japan and in neighboring countries. Chemosphere,1997,34(4):801-806 被引 1    
14.  Kim K H. The exchange of gaseous mercury across soil-air interface in a residential area of Seoul Korea. Atmospheric Environment,1999,33:3153-3165 被引 2    
15.  Kim K H. A decadal shift in total gaseous mercury concentration levels in Seoul Korea:Changes between the late 80s and the late 90s. Atmospheric Environment,2002,36(4):663-675 被引 1    
16.  Seigneur C. Global source attribution for mercury deposition in the United States. Environmental Science and Technology,2004,38:555-569 被引 11    
17.  Carmichael G R. Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P Experiment. Journal of Geophysical Research,2003,108(d21):8823 被引 5    
18.  Ebinghaus R. Measurements of atmospheric mercury with high time resolution:recent applications in environmental research and monitoring. Fresenius Journal of Analytical Chemistry,2001,371:806-815 被引 4    
19.  Schroeder W H. Arctic springtime depletion of mercury. Nature,1998,394:331-332 被引 23    
20.  Baker P G L. Atmospheric mercury measurements at Cape Point South Africa. Atmospheric Environment,2002,36:2459-2465 被引 2    
引证文献 7

1 刘娜 大气汞源解析受体模型研究进展 生态学杂志,2010,29(4):798-804
被引 1

2 刘明 广州市大气气态总汞含量季节和日变化特征 中国环境科学,2012,32(9):1554-1558
被引 9

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号