帮助 关于我们

返回检索结果

硅表面自组装双层膜制备及其摩擦磨损性能研究
Preparation and Tribological Behavior of a Self-assembled Dual Layer Film on Silicon

查看参考文献16篇

张丙伍 1   苏中兴 1   张俊彦 2  
文摘 采用自组装方法在羟基化硅基底表面制备硬脂酸/环氧硅烷双层膜,采用接触角测定仪、椭圆偏光仪、红外光谱仪、原子力显微镜、扫描电子显微镜和UMT-2MT型摩擦磨损试验机评价薄膜结构及其摩擦磨损特性.结果表明:自组装双层膜对水的接触角为96°,膜厚2.8 nm,双层膜中烷基链呈现较好有序性,在1 μm×1 μm扫描面积内表面均方根粗糙度(RMS)为0.227 nm.自组装硬脂酸/环氧硅烷双层膜能够有效降低基底的摩擦系数,摩擦系数稳定在0.12左右,同时表现出优异承载抗磨性能,在载荷0.5 N、1 N和2 N下,耐磨寿命分别为14 200 s以上、7 500 s和1 800 s
其他语种文摘 A self-assembled dual layer film was successfully prepared on single-crystal silicon substrate by chemical adsorption of stearic acid (STA) molecules on self-assembled monolayer of (3-glycidoxypropyl) trimethoxysilane ( GPS) with terminal epoxy group. The structure and morphology of the dual-layer STA-GPS film were characterized by means of ellipsometric thickness measurement, contact-angle measurement, Fourier Transformation Infrared spectrometric analysis, and atomic force microscopic analysis. The dual layer film was hydrophobic with the contact angle for water to be 96° and the overall thickness about 2. 8 nm. The FT-IR spectra indicated that the film has local order structure. Atomic force microscopic image showed that the dual layer film was relatively smooth and homogeneous with RMS of 0. 23 nm. Tribological properties of the dual-layer STA-GPS film were also investigated on a^ UMT-2MT tribometer using ball-on-plate mode. The film greatly reduced friction coefficient and possessed better load-carrying capacity and antiwear ability, beacauce the interchain hydrogen bonds among the molecules en-chanced the stability of dual layer film against rubbing the counterpart ball and endowed it an excellent antiwear a-bility
来源 摩擦学学报 ,2007,27(3):199-203 【核心库】
关键词 自组装 ; 双层膜 ; 硬脂酸 ; 摩擦磨损性能
地址

1. 兰州大学,化学化工学院, 甘肃, 兰州, 730000  

2. 中国科学院兰州化学物理研究所, 固体润滑国家重点实验室, 甘肃, 兰州, 730000

语种 中文
文献类型 研究性论文
ISSN 1004-0595
学科 机械、仪表工业
基金 中国科学院“百人计划”项目
文献收藏号 CSCD:2821079

参考文献 共 16 共1页

1.  Zhao Y P. Mechanics of adhension in MEMS-a review. J Adhes Sci Technol,2003,17:519-546 被引 39    
2.  Komvopoulos K. Adhension and friction forces in microelectromechanical systems:mechanisms measurement surface modification techniques and adhension theory. J Adhes Sci Technol,2003,17:477-517 被引 12    
3.  Maboudian R. Surface chemistry and tribology of MEMS. Annu Rev Phys Chem,2004,55:35-54 被引 11    
4.  Spearing S M. Materials issues in microelectromechanical systems(MEMS). Acta Mater,2000,48:179-196 被引 36    
5.  张俊彦. 薄膜/涂层的摩擦学设计及其研究进展. 摩擦学学报,2006,26(4):387-396 被引 36    
6.  任嗣利. 自组装单分子膜的摩擦学研究进展. 摩擦学学报,2000,20(5):395-400 被引 21    
7.  Carpick R W. Scratching the Surface:Fundamental investigations of tribology with atomic force microscopy. Chem Rev,1997,97:1163-1194 被引 29    
8.  Shon Y S. Spiroalkanedithiol-based SAMs reveal unique insight into the wettabilities and frictional properties of organic thin films. J Am Chem Soc,2002,122:7556-7563 被引 6    
9.  Subbotin A. Nanotribological properties of unsymmetrical n-dialkyl sulfide monolayers on Gold:effect of chain length on adhesion friction and imaging. Langmuir,2000,16:3249-3256 被引 5    
10.  张俊彦. 硅烷自组装膜及硅烷/二氧化钛复合膜的XPS表征与摩擦性能研究. 摩擦学学报,2000,20(4):241-243 被引 21    
11.  张会臣. 界面接触特性对两种自组装分子膜摩擦特性的影响. 摩擦学学报,2004,24(1):6-10 被引 7    
12.  吴炬. γ-甲基丙烯酰氧丙基三甲氧基硅烷自组装膜的制备及其摩擦学性能. 摩擦学学报,2005,25(2):117-120 被引 10    
13.  Ren S L. Micro-and macro-tribological study on a self-assembled dual-layer film. Langmuir,2003,19:2763-2767 被引 7    
14.  Julthongpiput D. Tribological behavior of grafted polymer gel nanocoatings. Tribology Letters,2002,13:35-40 被引 3    
15.  Tsukruk V V. Sticky molecular surfaces:epoxysilane self-assembled monolayers. Langmuir,1999,15:29-3032 被引 1    
16.  Song S Y. Preparation and tribological study of a peptide-containing alkylsiloxane monolayer on silicon. Langmuir,2006,22:6010-6015 被引 5    
引证文献 10

1 孙昌国 铝金属薄膜上制备OTS自组装分子膜的摩擦学特性 大连海事大学学报,2008,34(3):34-37,42
被引 1

2 王莹 多烷基环戊烷/有机硅烷双层膜的制备及摩擦学性能研究 摩擦学学报,2010,30(5):437-442
被引 7

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号