帮助 关于我们

返回检索结果

纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析
Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells

查看参考文献20篇

胡志华 1   廖显伯 2   曾湘波 2   徐艳月 2   张世斌 2   刁宏伟 2   孔光临 2  
文摘 运用美国宾州大学发展的AMPS程序模拟分析了n-型纳米硅(n+-nc-Si:H)/p-型晶体硅(p-c-Si)异质结太阳电池的光伏特性.分析表明,界面缺陷态是决定电池性能的关键因素,显著影响电池的开路电压(VOC)和填充因子(FF),而电池的光谱响应或短路电流密度(JSC)对缓冲层的厚度较为敏感.对不同能带补偿(bandgap offset)的情况所进行的模拟分析表明,随着ΔEc的增大,由于界面态所带来的开路电压和填充因子的减小逐渐被消除,当ΔEc达到0.5eV左右时界面态的影响几乎完全被掩盖.界面层的其他能带结构特征对器件性能的影响还有待进一步研究.最后计算得到了这种电池理想情况下(无界面态、有背面场、正背面反射率分别为0和1)的理论极限效率ηmax=31.17% (AM1.5,100mW/cm2,0.40-1.10μm波段).
其他语种文摘 AMPS simulator, which was developed by Pennsylvania State University, has been used to simulate photovoltaic perfor-mances of ne-Si: H/ c-Si solar cells. It is shown that interface states are essential factors prominently influencing open circuit voltages (Voc) and fill factors (FF) of these structured solar cells. Short circuit current density (J_(SC)) or spectral response seems more sensitive to the thickness of intrinsic a-Si: H buffer layers inserted into n~+ -nc-Si: H layer and p-c-Si substrates. Impacts of bandgap offset on solar cell performances have also been analyzed. As A£c increases, degradation of Voc and FF owing to interface states are dramatically recovered. This implies that the interface state cannot merely be regarded as carrier recombi-nation centres, and impacts of interfacial layer on devices need further investigation. Theoretical maximum efficiency of up to 31.17% (AMI.5, 100mW/cm~2, 0.40-1.1 μm) has been obtained with BSF structure, idealized light- trapping effect( R_F = 0, R_B = 1) and no interface states.
来源 物理学报 ,2003,52(1):217-224 【核心库】
关键词 nc-Si:H/c-Si异质结 ; 太阳电池 ; 计算机模拟
地址

1. 中国科学院半导体研究所, 凝聚态物理中心,表面物理国家重点实验室, 北京, 100083  

2. 中科院半导体所, 凝聚态物理中心,表面物理国家重点实验室, 北京, 100083

语种 中文
文献类型 研究性论文
ISSN 1000-3290
学科 物理学
基金 国家973计划
文献收藏号 CSCD:1490065

参考文献 共 20 共1页

1.  Rannels J E. Rannels J E 1998 Proc. Proc. of the 2nd World Conference on Photovoltaic Solar Energy Conversion,1998:3296 被引 1    
2.  Song Y J. Anderson W A 2000 Solar Energy Material & Solar Cells 64 241. Solar Energy Material & Solar Cells,2000,64:241 被引 1    
3.  Kenji Yamamoto. Solar Energy Material & Solar Cells,2001,66:117 被引 1    
4.  张世斌. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报,2002,51:111 被引 3    
5.  Yang J. Phys. Appl. Phys. Lett,1997,70:2975 被引 13    
6.  Tucci M. Tucci M 1999 Solar Energy Material & Solar Cells 57 249. Solar Energy Material & Solar Cells,1999,57:249 被引 1    
7.  Matsumoto Y. Appl. J. Appl. Phys,1990,67:6538 被引 2    
8.  Wen Ma. Japanese Journal of Applied Physics,1996,35:640 被引 1    
9.  Hamakawa Y. Hamakawa Y 1983 Japanese Journal of Applied Physics 22 L605. Japanese Journal of Applied Physics,1983,22:L605 被引 1    
10.  Tanaka M. Tanaka M 1992 Japanese Journal of Applied Physics 31 3518. Japanese Journal of Applied Physics,1992,31:3518 被引 26    
11.  Yuliang He. Rev. Phys. Rev. B 59 15352,1999 被引 1    
12.  张世斌. 物理学报,2002,51:151 被引 2    
13.  Hazra S. J. Jpn. J. Appl. Phys,1999,38:L494 被引 1    
14.  Fontoni A. Thin Solid Films,2001,383:314 被引 1    
15.  Gall S. Solar Energy Material & Solar Cells,1997,49:157 被引 2    
16.  Fonash S J. A Manual For AMPS-1D,1997 被引 1    
17.  Fahrenbruch A L. Bube R H 1983 Fundamentals of Solar Cells (Published by Academic Press. Fundamentals of Solar Cells,1983 被引 6    
18.  Jagannathan B. Solar Energy Material & Solar Cells,1997,46:289 被引 4    
19.  Zhao J. Phys. Appl. Phys. Lett,1995,66:3636 被引 7    
20.  Green M A. Green M A 1999 Clean Electricity From Photovoltaics. By Mary D. Archer and Robert Hill,1999:149-189 被引 1    
引证文献 13

1 胡志华 非晶硅太阳电池光照J-V特性的AMPS模拟 物理学报,2005,54(5):2302-2306
被引 15

2 张勇 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响 物理学报,2009,58(4):2829-2835
被引 2

显示所有13篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号