EB-PVD热障涂层的热循环失效机理
Failure Mechanism of EB-PVD Thermal Barrier Coating Subjected to Thermal Cycling
查看参考文献12篇
文摘
|
采用电子束物理气相沉积方法(EB-PVD)在NiCrAlY粘结层上沉积Y_2O_3部分稳定的ZrO_2陶瓷层。对样品进行了1050 ℃的热循环实验。结果表明,沉积态陶瓷层表面比较致密,其柱状晶粒簇拥成团,晶粒簇间存在间隙。随着热循环不断进行,陶瓷层表面变得疏松,晶粒簇间距增大,相邻较大的间隙互相连接成微裂纹,并逐渐横向及纵向扩展。1050 ℃循环200次,粘结层氧化物是均匀连续的一薄层,主要由Al_2O_3组成;循环300次后,出现了NiO、尖晶石等氧化物。根据显微结构观察和EDS、XRD分析结果,提出了EB-PVD热障涂层热循环失效机理。 |
其他语种文摘
|
Y_2O_3 partially stabilized ZrO_2 ceramic top coat was deposited on NiCrAlY bond coat by electron beam physical vapor deposition (EB-PVD). Thermally cyclic test was performed at 1050 ℃. It is shown that the as-deposited ceramic top coat is relatively dense and the columnar grains formed dense clusters. However there are gaps or holes among grain clusters. With thermal cycling going on, the gaps among columnar grain clusters become larger. The relatively dense gaps interconnect into one another and form microcracks, which extend across and through the top coat gradually. After 200 thermal cycles, the thermally grown oxides (TGO) formed at the interface of bond coat/ceramic top coat is uniform and consist of Al_2O_3 exclusively. After 300 cycles some NiO and spinels occur in the TGO. According to the microstructure observation, EDS and XRD analysis, the failure mode of EB-PVD thermal barrier coating is put forward. |
来源
|
材料工程
,2002,0(8):20-23 【核心库】
|
关键词
|
电子束物理气相沉积
;
热障涂层
;
热循环
;
失效机理
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
北京航空航天大学, 北京, 100083
3.
湖南大学材料科学与工程学院, 长沙, 410082
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:988000
|
参考文献 共
12
共1页
|
1.
R A Miller. Current status of thermal barrier coatings-an overview.
Surf Coat Technol,1987,30:1-11
|
CSCD被引
77
次
|
|
|
|
2.
R A Miller. Thermal barrier coatings for aircraft engines: history and directions.
J Thermal Spray Tech,1997,6(1):35-42
|
CSCD被引
119
次
|
|
|
|
3.
A S James. Developments in R F Plasma-assisted physical vapor deposition partially yittria-stablized zirconia thermal barrier coatings.
Surf Coat Tech,1990,43/44:436-445
|
CSCD被引
4
次
|
|
|
|
4.
李美姮. 一种热障涂层的形貌和相结构特征研究.
材料导报,2001,15(1):71-73
|
CSCD被引
4
次
|
|
|
|
5.
A Bennett. Properties of thermal barrier coatings.
Mater Sci Technol,1986,2(3):257-261
|
CSCD被引
4
次
|
|
|
|
6.
T N Phys-Jones. Coatings for blade and vane applications in gas turbines.
Corros Sci,1989,29:623-646
|
CSCD被引
2
次
|
|
|
|
7.
K H G Schmitt-Thoma. Thermal barrier coating with improved oxidation resistance.
Surf Coat Technol,1994,68/69:113-115
|
CSCD被引
3
次
|
|
|
|
8.
Lee E Y. Diffusional interactions and reactions between a partially stabilized zirconia thermal barrier coating and the NiCrAlY bond coat.
Mater Sci Eng A,1989,121:467-473
|
CSCD被引
5
次
|
|
|
|
9.
S Stecura. Two-layer thermal barrier coatings I: effects of composition and temperature on oxidation behavior and failure. Stephan Stecura.
Thin Solid Films,1989,182:121
|
CSCD被引
8
次
|
|
|
|
10.
李美姮.
一种单晶高温合金NiCrAlY/ZrO_2热障涂层的氧化行为,2000:16
|
CSCD被引
1
次
|
|
|
|
11.
Wang F. The effect of nanocrystallization on the selective oxidation and adhesion of Al_2O_3 scales.
Oxide Metals,1997,48:215-224
|
CSCD被引
1
次
|
|
|
|
12.
李美姮. EB-PVD热障涂层热循环过程中粘结层氧化和相结构研究.
金属学报,2002,38(1):79-83
|
CSCD被引
7
次
|
|
|
|
|