激光选区熔化GH3536高温合金的静态再结晶行为及力学性能
Static recrystallization behavior and mechanical properties of GH3536 superalloy by selective laser melting
查看参考文献36篇
文摘
|
为了研究激光增材制造高温合金的静态再结晶行为及其对力学性能的影响。以固溶强化型镍基高温合金GH3536为研究对象,采用激光选区熔化(SLM)制备试块和试棒,对其在1175 ℃进行不同时间的固溶处理,基于EBSD分析研究其在热处理过程中的静态再结晶行为,探讨其对拉伸性能的影响。结果表明:沉积态组织以沿建造方向生长的柱状晶为主,具有〈001〉丝织构。1175 ℃保温1 h的再结晶分数为61.8%,孪晶是再结晶形核的主要方式,再结晶程度随着保温时间的延长逐渐提高。根据Avirami方程拟合得到再结晶动力学曲线,与实验结果匹配良好。静态再结晶可以显著减弱力学性能的各向异性。保温时间超过1 h之后,力学性能变化幅度较小。 |
其他语种文摘
|
To study the static recrystallization behavior of laser additive manufacturing superalloys and their effect on mechanical properties, the solid-solution strengthened nickel-based superalloy GH3536 was investigated. The selective laser melting(SLM)method was used to prepare test blocks and bars, which were subjected to solution treatment at 1175 ℃ for different time. The static recrystallization behavior during heat treatment was investigated by EBSD analysis to explore its influence on the tensile properties. The results show that the as-built state organization is dominated by columnar grain growing along the build direction with〈 001〉 fiber texture. The recrystallization fraction after heating at 1175 ℃ for 1 h is 61.8%. Twinning is the main formation of recrystallization nucleation, and the degree of recrystallization gradually increases with the extension of the heating time. The recrystallization kinetic curve was obtained by fitting the Avirami equation, which matched the experimental results well. Static recrystallization significantly suppresses the anisotropy of the mechanical properties. The change magnitude of mechanical properties is small after the heating times more than 1 h. |
来源
|
材料工程
,2025,53(2):142-151 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2024.000259
|
关键词
|
激光选区熔化
;
GH3536
;
固溶处理
;
静态再结晶
|
地址
|
1.
江苏理工学院材料工程学院, 江苏, 常州, 213001
2.
西北工业大学重庆科创中心, 重庆, 401135
3.
北京动力机械研究所, 北京, 100074
4.
华中科技大学材料科学与工程学院, 武汉, 430074
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
国家自然科学基金项目
;
常州市领军型创新人才引进培育项目
;
国家重点研发计划
|
文献收藏号
|
CSCD:7946167
|
参考文献 共
36
共2页
|
1.
Nouri A. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: a review.
Journal of Materials Science & Technology,2021,94:196-215
|
CSCD被引
20
次
|
|
|
|
2.
Hu X A. Microstructure and mechanical behavior of Inconel 625 alloy processed by selective laser melting at high temperature up to 1000℃.
Rare Metals,2020,39(10):1181-1189
|
CSCD被引
4
次
|
|
|
|
3.
Jihong Z H U. A review of topology optimization for additive manufacturing: status and challenges.
Chinese Journal of Aeronautics,2021,34(1):91-110
|
CSCD被引
1
次
|
|
|
|
4.
Campbell I. Additive manufacturing: rapid prototyping comes of age.
Rapid Prototyping Journal,2012,18(4):255-258
|
CSCD被引
14
次
|
|
|
|
5.
Wang D. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties.
Materials & Design,2017,117:121-130
|
CSCD被引
53
次
|
|
|
|
6.
Zhu J. Reducing directionally arranged substructure induced anisotropic mechanical properties of Hastelloy X superalloy fabricated by laser directed energy deposition.
Materials Science and Engineering: A,2023,862:144461
|
CSCD被引
1
次
|
|
|
|
7.
Jinoop A N. Effect of post heattreatment on the microstructure and mechanical properties of Hastelloy-X structures manufactured by laser based directed energy deposition.
Journal of Alloys and Compounds,2019,797:399-412
|
CSCD被引
2
次
|
|
|
|
8.
Esmaeilizadeh R. On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing.
Journal of Manufacturing Processes,2019,37:11-20
|
CSCD被引
6
次
|
|
|
|
9.
Huang Z. On the orientation dependent microstructure and mechanical behavior of Hastelloy X superalloy fabricated by laser powder bed fusion.
Materials Science and Engineering: A,2022,844:143208
|
CSCD被引
1
次
|
|
|
|
10.
Aghili S E. Microstructure and oxidation behavior of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate.
Ceramics International,2020,46(2):1668-1679
|
CSCD被引
5
次
|
|
|
|
11.
Ren J. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing.
Nature,2022,608(7921):62-68
|
CSCD被引
51
次
|
|
|
|
12.
Qin L. The microstructure and mechanical properties of deposited-IN625 by laser additive manufacturing.
Rapid Prototyping Journal,2017,23(6):1119-1129
|
CSCD被引
6
次
|
|
|
|
13.
Tomus D. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting.
Materials Science and Engineering: A,2016,667:42-53
|
CSCD被引
51
次
|
|
|
|
14.
Chen N. Laser powder bed fusion of GH3536 nickel-based superalloys: processing parameters, microstructure and mechanical properties.
Materials Characterization,2023,202:113018
|
CSCD被引
4
次
|
|
|
|
15.
Deirmina F. Effect of layer thickness, and laser energy density on the recrystallization behavior of additively manufactured Hastelloy X by laser powder bed fusion.
Additive Manufacturing Letters,2023,7:100182
|
CSCD被引
2
次
|
|
|
|
16.
Keshavarzkermani A.
Characterization and simulation of the microstructure of additively manufactured Hastelloy X parts with columnar grain structure,2021
|
CSCD被引
1
次
|
|
|
|
17.
Zhang W. Effect of solution tem-perature on the microstructure and mechanical properties of Hastelloy X superalloy fabricated by laser directed energy deposition.
Materials Science and Engineering: A,2021,820:141537
|
CSCD被引
1
次
|
|
|
|
18.
Zhong Gang S. Microstructure evolution and mechanical properties of Hastelloy X alloy produced by selective laser melting.
High Temperature Materials and Processes,2020,39(1):124-135
|
CSCD被引
1
次
|
|
|
|
19.
Zhang S. Microstructure and anodic electrochemical behavior of additive manufactured Hastelloy X alloy via directed energy deposition.
Additive Manufacturing,2021,39:101824
|
CSCD被引
1
次
|
|
|
|
20.
Kangazian J. An investigation on the microstructure and compression properties of laser powder-bed fusion fabricated Hastelloy X Ni-based superalloy honeycomb structures.
Materials Science and Engineering: A,2022,853:143797
|
CSCD被引
4
次
|
|
|
|
|