帮助 关于我们

返回检索结果

可充电镁硫二次电池研究进展
Research progress in rechargeable magnesiumsulfur secondary batteries

查看参考文献59篇

杜文涛 1   闫晓燕 1 *   刘宝胜 1 *   赵新新 1   张晓华 1   王明菊 2  
文摘 新兴的储能技术必须满足低成本、合理安全、自然资源丰富、能量密度高的要求。可充电镁硫(Mg-S)电池具有高能量密度、高安全性、成本低等优点。然而受自放电、快速容量损失、镁负极钝化和硫正极利用率低等问题的限制,其性能受到限制。本文综述近年来镁硫电池研究进展,重点介绍非亲核电解质、正极和负极的研究进展,总结能够促进可逆沉积和溶解镁离子的电解质,同时保持与硫正极和其他电池组件的兼容性。此外结合研究趋势对镁硫电池当前面临的挑战,即硫化物的溶解、扩散和Mg-S电池反应动力学缓慢等问题进行探讨以及结合未来的前景给出建议,如对MOFs掺杂不同元素、探究电池的反应机理等。
其他语种文摘 Emerging energy storage technologies must meet the requirements of low cost, reasonable safety, rich natural resources and high energy density. The rechargeable magnesium sulfur(Mg-S) battery has the advantages of high energy density, high safety, low cost,and so on. However, its performance is limited by self-discharge, rapid capacity loss, magnesium anode passivation,and low sulfur utilization. The recent advances in Mg-S battery research, focusing on the advances in non-nucleophilic electrolytes, anodes,and cathodes, summarizing electrolytes that can facilitate reversible deposition and dissolution of magnesium ions,and maintaining compatibility with sulfur cathodes and other battery components are reviewed in this paper. In addition, the current challenges of magnesium-sulfur batteries are discussed in the context of research trends, such as the dissolution and diffusion of sulfides and the slow reaction kinetics of Mg-S batteries, as well as recommendations for the future, such as doping MOFs with different elements and exploring the reaction mechanism of the batteries.
来源 材料工程 ,2025,53(2):96-105 【核心库】
DOI 10.11868/j.issn.1001-4381.2022.001048
关键词 镁硫电池 ; 电解质 ; 硫正极 ; 多硫化物
地址

1. 太原科技大学材料科学与工程学院, 太原, 030024  

2. 山西华钠芯能科技有限责任公司, 山西, 阳泉, 045000

语种 中文
文献类型 综述型
ISSN 1001-4381
学科 一般工业技术;化学工业
基金 山西省基础研究计划面上项目 ;  山西省重点研发计划项目 ;  国家自然科学基金面上项目 ;  山西省基础研究计划青年科学研究项目 ;  太原科技大学研究生教育创新项目
文献收藏号 CSCD:7946162

参考文献 共 59 共3页

1.  Kong L. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Advanced Energy Materials,2018,8(20):1800849 CSCD被引 31    
2.  陈颖. 高性能金属材料激光增材制造应力变形调控研究现状. 材料工程,2019,47(7):1-10 CSCD被引 44    
3.  Manthiram A. Challenges and prospects of lithium-sulfur batteries. Accounts of Chemical Research,2013,46(5):1125-1134 CSCD被引 163    
4.  Kong L. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Advanced Materials,2018,30(2):1705219 CSCD被引 46    
5.  Rashad M. Quest for magnesium-sulfur batteries: current challenges in electrolytes and cathode materials developments. Coordination Chemistry Reviews,2020,415:213312 CSCD被引 7    
6.  Zhao-Karger Z. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. Journal of Materials Chemistry A,2017,5(22):10815-10820 CSCD被引 22    
7.  Lu Y. Progress and perspective on rechargeable magnesium-sulfur batteries. Small Methods,2021,5(5):2001303 CSCD被引 2    
8.  肖建华. 镁硫二次电池研究进展. 硅酸盐学报,2020,7(48):963-977 CSCD被引 1    
9.  Muldoon J. Electrolyte roadblocks to a magnesium rechargeable battery. Energy & Environmental Science,2012,5(3):5941-5950 CSCD被引 41    
10.  Lei T. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process. Corrosion Science,2010,52(10):3504-3508 CSCD被引 15    
11.  Gao T. Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI_2-DME electrolyte. Advanced Materials,2018,30(3):1704313 CSCD被引 8    
12.  Muthuraj D. Magnesium polysulfide catholyte (MgS_x): synthesis, electrochemical and computational study for magnesium-sulfur battery application. Journal of Power Sources,2021,486:229326 CSCD被引 2    
13.  Liebenow C. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates. Electrochemistry Communications,2000,2(9):641-645 CSCD被引 15    
14.  Kim H S. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nature Communications,2011,2(1):427 CSCD被引 41    
15.  Vinayan B P. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale,2016,8(6):3296-3306 CSCD被引 15    
16.  Yu X. Performance enhancement and mechanistic studies of magnesium-sulfur cells with an advanced cathode structure. ACS Energy Letters,2016,1(2):431-437 CSCD被引 10    
17.  Zhou X. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Advanced Materials,2018,30(7):1704166 CSCD被引 18    
18.  Gao T. Enhancing the reversibility of Mg/S battery chemistry through Li~+ mediation. Journal of the American Chemical Society,2015,137(38):12388-12393 CSCD被引 23    
19.  Shterenberg I. Evaluation of (CF3SO_2)2N-(TFSI) based electrolyte solutions for Mg batteries. Journal of the Electrochemical Society,2015,162(13):A7118 CSCD被引 22    
20.  Sa N. Role of chloride for a simple, non-grignard mg electrolyte in ether based solvents. ACS Applied Materials & Interfaces,2016,8(25):16002 CSCD被引 8    
引证文献 1

1 孙文浩 高安全锂离子电池用耐高温隔膜的研究进展 材料工程,2025,53(7):104-120
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号