茄腐镰孢菌分泌蛋白与效应子的预测分析
Genome-wide prediction and analysis of secreted proteins and effectors in Fusarium solani
查看参考文献57篇
文摘
|
茄腐镰孢菌(Fusarium solani)寄主范围广泛,可引发生产上的毁灭性病害-根腐病。分泌蛋白在病原菌对植物的侵入、定殖和扩展等致病过程中起着重要作用,本研究利用SignalP、TMHMM、WoLF PSORT和PredGPI等软件对F.solani全基因组编码的17654条蛋白序列进行了分泌蛋白和效应子的预测分析,结果表明:F.solani基因组中有1032个分泌蛋白基因,占编码蛋白基因总数的5.85%。进一步利用dbCAN3等软件对经典分泌蛋白中的碳水化合物活性酶(Carbohydrate-active enzymes,CAZymes)进行预测,发现其中258个为CAZymes,以糖苷水解酶亚家族成员最多。分泌蛋白中效应蛋白(effector)的预测结果表明,F.solani中有185个潜在的效应蛋白,其中183个蛋白的功能可被PHI数据库注释到。利用农杆菌介导的植物瞬时表达系统,在本氏烟中对其中5个注释为增加F.solani毒力的效应蛋白进行验证,发现其中2个候选效应蛋白(XP_046140852.1和XP_046131041.1)能够抑制由Bcl2关联X蛋白BAX(BCL2-associated X protein)引起的细胞程序性死亡,可能在F.solani侵染致病过程中起重要作用。研究结果有助于揭示F.solani的致病分子机制,同时为F.solani与植物互作的深入研究提供了理论依据。 |
其他语种文摘
|
Fusarium solani,known for its extensive host range,is the causal agent of the destructive root rot disease in agriculture production.Secreted proteins play important roles in the infection of host plants by phytopathogenic fungi.To identify the secreted proteins and effectors in F.solani,we performed an in-depth analysis of the F.solani genome in this study.Among the total 17654 genomic proteins,1032 proteins were predicted to be the candidate secreted proteins by using SignalP,TMHMM,WoLF PSORT and PredGPI softwares,accounting for 5.85% of the total proteins in F.solani.Among them,258 proteins were predicated to be carbohydrate-active enzymes (CAZymes) by using the dbCAN3 software,with the glycoside hydrolase family being the most abundant.Furthermore,185 secreted proteins were predicated to be candidate effectors,with 183 sequences being annotated in the PHI database.By employing a virus-based transient expression system,we investigated the effect of the 5 candidate effectors annotated for increased virulence on BAX-triggered programmed cell death,and the result showed that the two effectors (XP_046140852.1 and XP_046131041.1) could suppress BAX-triggered programmed cell death in N.benthamiana.These findings provide not only an important reference for further analysis of the pathogenic molecular mechanism of F.solani but also a theoretical basis for understanding the interactions between F.solani and host plants. |
来源
|
植物病理学报
,2025,55(1):32-44 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001646
|
关键词
|
茄腐镰孢菌
;
生物信息学
;
分泌蛋白
;
效应蛋白
;
碳水化合物酶类
|
地址
|
1.
浙江师范大学生命科学学院, 金华, 321000
2.
浙江省农业科学院蔬菜所, 杭州, 310000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
浙江省自然科学基金
;
浙江省"十四五"农业新品种选育重大科技专项
;
浙江省"三农九方"农业科技协作项目
|
文献收藏号
|
CSCD:7901721
|
参考文献 共
57
共3页
|
1.
Sun R.
Study on enzyme activity and metabonomic changes of Panaxginseng to Fusarium solani infection,2023
|
CSCD被引
1
次
|
|
|
|
2.
Tiwari V. Efficacy of some antagonistic fungi and botanicals against Fusarium solani causing damping-off disease in eggplant(Solanum Melongena L.).
Journal of Applied Biosciences,2017,43(1):47-56
|
CSCD被引
1
次
|
|
|
|
3.
Wang X. 中国甘薯产业和种业发展现状与未来展望.
中国农业科学,2021,54(3):483-492
|
CSCD被引
62
次
|
|
|
|
4.
Hussein M A. Characterization, pathogenicity and enzymatic profile of Fusarium solani associated with potato tubers in Upper Egypt.
Archives of Phytopathology and Plant Protection,2020,53(11/12):495-508
|
CSCD被引
2
次
|
|
|
|
5.
Batnini M. Medicago truncatula in interaction with Fusarium and Rhizoctonia phytopathogenic fungi: fungal aggressiveness, plant response biodiversity and character herita-bility indices.
The Plant Pathology Journal,2021,37(4):315-328
|
CSCD被引
2
次
|
|
|
|
6.
Rostami A. Biological control of Fusarium root rot of bean with two Trichoderma species and Pseudomonas fluorescens.
Plant Pathology Science,2020,9(2):14-28
|
CSCD被引
2
次
|
|
|
|
7.
Huang Y T. Introduction and control methods of pathogenic fungi pythium and Fusarium oxysporum of ginger (in Chinese).
广东化工,2020,47(20):56-57
|
CSCD被引
3
次
|
|
|
|
8.
Ren G D. 根系分泌物与土传病害的关系研究进展.
土壤,2021,53(2):229-235
|
CSCD被引
24
次
|
|
|
|
9.
Wang Z. Analysis of the current situation of soybean root rot control in Heilongjiang Province (in Chinese).
现代化农业,2023(8):9-11
|
CSCD被引
1
次
|
|
|
|
10.
Hu X. 钩状木霉菌的生物学特性及对腐皮镰刀菌的抑菌机理研究.
中国生物防治学报,2022,38(1):81-87
|
CSCD被引
7
次
|
|
|
|
11.
Nimchuk Z. Recognition and response in the plant immune system.
Annual Review of Genetics,2003,37(1):579-609
|
CSCD被引
23
次
|
|
|
|
12.
Zhu Y P. 基于全基因组序列的核桃细菌性黑斑病菌分泌蛋白的预测及特征分析.
南京林业大学学报,2019,43(3):17-22
|
CSCD被引
8
次
|
|
|
|
13.
Boller T. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.
Science,2009,324(5928):742-744
|
CSCD被引
86
次
|
|
|
|
14.
Jones J. The plant immune system.
Nature,2006,444(7117):323-329
|
CSCD被引
748
次
|
|
|
|
15.
Yuan M. Pattern-recognition receptors are required for NLR-mediated plant immunity.
Nature,2021,592(7852):105-109
|
CSCD被引
100
次
|
|
|
|
16.
Sonah H. Computational prediction of effector proteins in fungi: opportunities and challenges.
Frontiers in Plant Science,2016,7:174161
|
CSCD被引
1
次
|
|
|
|
17.
Ramachandran S R. Effectors from wheat rust fungi suppress multiple plant defense responses.
Phytopathology,2017,107(1):75-83
|
CSCD被引
14
次
|
|
|
|
18.
Chen J S. 全基因组预测稻瘟菌的分泌蛋白.
中国农业科学,2006,39(12):2474-2482
|
CSCD被引
30
次
|
|
|
|
19.
Tian L. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析.
中国农业科学,2011,44(15):3142-3153
|
CSCD被引
34
次
|
|
|
|
20.
Bo S W. 炭疽属植物病原真菌分泌蛋白的预测及比较分析.
福建农林大学学报,2023,52(6):747-754
|
CSCD被引
2
次
|
|
|
|
|