藜麦炭疽病病原菌鉴定、生物学特性及室内药剂毒力测定
Identification and biological characteristics of the pathogen causing quinoa anthracnose and indoor toxicity determination of several fungicides to the pathogen
查看参考文献31篇
文摘
|
为明确藜麦炭疽病的病原种类及其生物学特性,筛选适于防治该病害的化学药剂,采用组织分离法获得代表性菌株LMTJ,并依据柯赫氏法则验证其为藜麦炭疽病的病原菌。结合病原菌的形态学特征以及ACT、CHS-1、GAPDH、ITS和TUB2多基因系统发育分析结果,确定引起藜麦炭疽病的病原菌为菠菜刺盘孢菌(Colletotrichum spinaciae) 。生物学特性研究结果表明,C. spinaciae LMTJ菌株在以淀粉为碳源、蛋白胨为氮源、20~ 25 ℃、pH6.0~ 7.0条件下菌丝生长最快,而在以蔗糖为碳源、硝酸钠为氮源、20~ 25 ℃、pH6.0条件下产孢最多。毒力测定结果表明,参试的5种药剂均能抑制LMTJ菌株的菌丝生长,其中92.8%异菌脲抑制作用较强,EC_(50)值为2.7654 mg·L~(-1)。本研究为藜麦炭疽病的诊断与防治提供了科学依据。 |
其他语种文摘
|
To identify the pathogen causing anthracnose disease on quinoa plants and investigate its biological characteristics,we collected diseased quinoa plants with typical anthracnose symptoms and conducted pathogen isolation and purification experiments. A representative strain LMTJ was obtained and determined as the pathogen of quinoa anthracnose by completing Koch's postulates. Combined with morphological characteristics and the result of multi-gene phylogenetic analyses (ACT,CHS-1,GAPDH,ITS and TUB2),the pathogen was identified as Colletotrichum spinaciae. The suitable culture condition for mycelial growth of C. spinaciae LMTJ strain is that with starch as carbon source,peptone as nitrogen source,temperature at 20 ~ 25 ℃ and pH value of 6.0 ~ 7.0,while for sporulation is with sucrose as carbon source,sodium nitrate as nitrogen source,temperature at 20 ~ 25 ℃ and pH value of 6.0. To screen effective fungicides for the prevention and control of quinoa anthracnose, the toxicity of 5 fungicides to C. spinaciae LMTJ strain was tested. The results showed that all the tested fungicides could inhibit mycelial growth of LMTJ,of which 92.8% iprodione exhibited the strongest inhibitory effect, with EC_(50) of 2.7654 mg·L~(-1). The results provide scientific basis for the diagnosis and control of quinoa anthracnose. |
来源
|
植物病理学报
,2024,54(6):1179-1187 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001638
|
关键词
|
藜麦
;
炭疽病
;
病原鉴定
;
生物学特性
;
毒力测定
|
地址
|
1.
山西农业大学植物保护学院, 太谷, 030801
2.
山西农业大学农学院, 太谷, 030801
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
黄土高原特色作物优质高效生产省部共建协同创新中心基金项目
;
山西农业大学生物育种工程项目
;
山西省重点研发计划项目
|
文献收藏号
|
CSCD:7896058
|
参考文献 共
31
共2页
|
1.
Graf B L. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.).
Comprehensive Reviews in Food Science and Food Safety,2015,14(4):431-445
|
CSCD被引
16
次
|
|
|
|
2.
Sen A. A review on medicinal and pharmaceutical importance of quinoa (Chenopodium quinoa).
Research Journal of Pharmacy and Technology,2021,14(3):1779-1784
|
CSCD被引
1
次
|
|
|
|
3.
Fonseca-Guerra I. First report of bacterial leaf spot on Chenopodium quinoa caused by Pseudomonas syringae in Colombia.
Journal of Plant Diseases and Protection,2021,128(3):1-4
|
CSCD被引
1
次
|
|
|
|
4.
Pei Y T. Characteristics and research status quo of Chenopodium quinoa Willd.
Agricultural Science & Technology,2016,17(12):2788-2791
|
CSCD被引
1
次
|
|
|
|
5.
Danielsen S. Diseases of quinoa (Chenopodium quinoa).
Food Reviews International,2003,19(1/2):43-59
|
CSCD被引
4
次
|
|
|
|
6.
Testen A L. First report of quinoa downy mildew caused by Peronospora variabilis in the United States.
Plant Disease,2012,96(1):146
|
CSCD被引
3
次
|
|
|
|
7.
Choi Y J. First report of quinoa downy mildew caused by Peronospora variabilis in Republic of Korea.
Plant Disease,2014,98(7):1003
|
CSCD被引
4
次
|
|
|
|
8.
Yin H. Identification of pathogen of downy mildew in quinoa (in Chinese).
植物病理学报,2018,48(3):413-417
|
CSCD被引
2
次
|
|
|
|
9.
Wang C. Diseases investigation and pathogen identification of quinoa downy mildew in Gansu Province (in Chinese).
核农学报,2023,37(3):503-512
|
CSCD被引
1
次
|
|
|
|
10.
Boerema G H. Ascochyta hyalospora (Cooke&Ell.) comb. nov. in seeds of Chenopodium quinoa.
Netherlands Journal of Plant Pathology,1977,83:153-159
|
CSCD被引
3
次
|
|
|
|
11.
Duan H.
Isolation,identification and prevention of quinoa leaf spot disease,2017
|
CSCD被引
1
次
|
|
|
|
12.
Yin H. Identification of the pathogen causing Cercospora leaf spot on quinoa (in Chinese).
植物病理学报,2019,49(3):408-414
|
CSCD被引
1
次
|
|
|
|
13.
Liao Y K.
Isolation and identification of the pathogen of quinoa leaf spot in Sichuan as well as prevention and cure,2020
|
CSCD被引
1
次
|
|
|
|
14.
Yin H. Morphology, phylogeny,and pathogenicity of Trichothecium,Alternaria, and Fusarium species associated with panicle rot on Chenopodium quinoa in Shanxi Province,China.
Plant Pathology,2022,71(2):344-360
|
CSCD被引
5
次
|
|
|
|
15.
Yu T C. Identification and biological characterization of a pathogen causing ear rot of Chenopodium quinoa (in Chinese).
福建农林大学学报(自然科学版),2022,51(3):322-328
|
CSCD被引
1
次
|
|
|
|
16.
Pal N. First report of quinoa anthracnose caused by Colletotrichum nigrum and C. truncatum in the United States.
Plant Disease,2020,105(3):705
|
CSCD被引
2
次
|
|
|
|
17.
Colque-Little C. A review of Chenopodium quinoa (Willd.) diseases-an updated perspective.
Plants,2021,10(6):1228
|
CSCD被引
1
次
|
|
|
|
18.
Fang Z D.
Research method for plant pathology (2nd Ed.) (in Chinese),1998:63
|
CSCD被引
8
次
|
|
|
|
19.
Wang Y X. First report of Colletotrichum nymphaeae causing walnut anthracnose in China.
Plant Disease,2022,106(11):2991
|
CSCD被引
1
次
|
|
|
|
20.
Zhang C D.
Molecular identification and rapid detection of some Colletotrichum species,2014
|
CSCD被引
1
次
|
|
|
|
|