航空发动机单晶高温合金涡轮转子叶片增材修复技术研究进展
Research progress in additive manufacturing for repair technology of single crystal superalloy turbine rotor blades for aero-engine
查看参考文献75篇
文摘
|
单晶高温合金涡轮转子叶片是航空发动机的核心热端部件之一,对航空发动机的推力和性能具有决定作用,其服役损伤增材修复技术是航空装备特种加工领域最具挑战的工作之一。本文系统梳理了航空发动机单晶高温合金涡轮转子叶片的增材修复工艺方法及其应用进展;针对单晶合金增材修复中易产生的热裂纹缺陷问题,从热裂纹形成机理、关键影响因素和控制措施等角度进行了归纳;总结了单晶合金增材修复组织及性能的研究进展。在此基础上,展望了单晶高温合金涡轮转子叶片增材修复的未来发展方向,指出单晶合金修复专用合金材料成分设计、新工艺开发和基于深度学习的多目标协同优化是此领域未来的重要研究方向。 |
其他语种文摘
|
Single crystal superalloy turbine rotor blade is one of the core hot-end components of the aeroengine, which has a decisive role in the thrust and performance of the aero-engine. Additive manufacturing for repair technology is one of the most challenging tasks in the special machining of aviation equipment. In this paper, the repair processes and their application for single crystal superalloy turbine rotor blades were systematically reviewed. Aiming at the problems of hot cracking defect, the cracking formation mechanism, key influencing factors, and control methods were summarized. In addition, the research progress in microstructure and mechanical properties of single crystal superalloys repaired by additive manufacturing technology are summed up. Furthermore, the prospective developing direction of single crystal superalloy turbine rotor blade repair is indicated. Specific filler material composition design, new process development, and multi-objective collaborative optimization based on deep learning are considered to be important future research directions. |
来源
|
材料工程
,2024,52(12):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2024.000548
|
关键词
|
单晶高温合金
;
涡轮转子叶片
;
航空发动机
;
增材修复
;
热裂纹
;
杂晶
|
地址
|
中国航发北京航空材料研究院3D打印研究与工程技术中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:7877428
|
参考文献 共
75
共4页
|
1.
Ren C. Microstructural evolution and its influence on the wear resistance of a laser directed energy deposited Ni-based single crystal superalloy.
Journal of Materials Science & Technology,2025,205:127-138
|
CSCD被引
1
次
|
|
|
|
2.
郎振乾. 单晶高温合金表面缺陷焊接修复的研究进展.
材料研究学报,2021,35(3):161-174
|
CSCD被引
6
次
|
|
|
|
3.
卓义民. 航空发动机叶片焊接修复技术的研究现状及展望.
航空制造技术,2021,64(8):22-28
|
CSCD被引
12
次
|
|
|
|
4.
Carter T J. Common failures in gas turbine blades.
Engineering Failure Analysis,2005,12:237-247
|
CSCD被引
40
次
|
|
|
|
5.
张佩宇. 单晶涡轮叶片高能束修复研究进展.
航空学报,2022,43(4):154-178
|
CSCD被引
4
次
|
|
|
|
6.
Rottwinkel B. Challenges for single-crystal(SX) crack cladding.
Physics Procedia,2014,56:301-308
|
CSCD被引
6
次
|
|
|
|
7.
Zeng Y. The microstructure characteristic and its influence on the stray grains of nickel-based single crystal superalloys prepared by laser directed energy deposition.
Journal of Materials Processing Technology,2024,329:118443
|
CSCD被引
1
次
|
|
|
|
8.
Ding D H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests.
The International Journal of Advanced Manufacturing Technology,2015,81:465-481
|
CSCD被引
69
次
|
|
|
|
9.
Kumar N. Wire arc additive manufacturing-a revolutionary method in additive manufacturing.
Materials Chemistry and Physics,2022,285:126144
|
CSCD被引
4
次
|
|
|
|
10.
Huang L. A review of challenges for wire and arc additive manufacturing (WAAM).
Transactions of the Indian Institute of Metals,2023,76:1123-1139
|
CSCD被引
2
次
|
|
|
|
11.
蔡祖鹏.
焊接热作用对镍基单晶凝固组织及缺陷的影响,2014
|
CSCD被引
1
次
|
|
|
|
12.
Churchman C. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes.
Materials Science and Technology,2024,27:811-817
|
CSCD被引
1
次
|
|
|
|
13.
曲伸. DZ125定向凝固高温合金氩弧焊修复工艺研究.
航空制造技术,2018,61(8):43-47
|
CSCD被引
6
次
|
|
|
|
14.
张胜. 大推力航空发动机热端部件损伤修复技术综述.
大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集,2007:349-354
|
CSCD被引
1
次
|
|
|
|
15.
Piscopo G. Current research and industrial application of laser powder directed energy deposition.
The International Journal of Advanced Manufacturing Technology,2022,119:6893-6917
|
CSCD被引
7
次
|
|
|
|
16.
Ahn D G. Directed energy deposition (DED) process: state of the art.
International Journal of Precision Engineering and Manufacturing-Green Technology,2021,8:703-742
|
CSCD被引
11
次
|
|
|
|
17.
Li Y. Review on additive manufacturing of single-crystal nickel-based superalloys.
Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,2022,1:100019
|
CSCD被引
13
次
|
|
|
|
18.
Gaumann M. Singlecrystal laser deposition of superalloys processing-microstructure maps.
Acta Materialia,2001,49:1051-1062
|
CSCD被引
135
次
|
|
|
|
19.
Vurgun S. Single-crystal repair of high-pressure single-crystal turbine blades for industrial conditions.
Procedia CIRP,2022,111:233-236
|
CSCD被引
1
次
|
|
|
|
20.
Cardoso J A S B. Microstructure of a coated single crystalline Rene N5 part repaired by epitaxial laser deposition.
Additive Manufacturing,2022,49:102515
|
CSCD被引
3
次
|
|
|
|
|