SiC_f/SiC陶瓷基复合材料增韧机理及界面相微区性能测试方法研究进展
Research progress on toughening mechanism and interphase property testing methods of SiC_f/SiC ceramic matrix composites
查看参考文献65篇
文摘
|
作为一种典型的陶瓷基复合材料(ceramic matrix composites,CMC),SiC_f/SiC复合材料具有高比强度、耐高温、抗氧化和抗热震等优点,在航空航天领域应用前景广阔。纤维和基体中间的界面相具有保护纤维、传递载荷、偏转裂纹等作用,赋予SiC_f/SiC复合材料伪塑性断裂特征。界面相的设计方案会显著影响其微区性能,进而影响SiC_f/SiC复合材料宏观力学性能和损伤失效模式。近年来发展的基于聚焦离子束(focused ion beam,FIB)的微纳加工技术和基于纳米压痕的微观力学测试技术是表征SiC_f/SiC复合材料界面相微区性能的有效手段。本文综述了SiC_f/SiC界面相现有设计方案及界面相微区性能对增韧效果的影响机制,重点总结了单纤维顶出/顶入、微柱压缩等小尺寸力学测试(small-scale mechanical testing,SSMT)技术的应用现状及各方法的适用条件和优缺点。最后,对CMC界面相微区性能研究的发展趋势做了初步展望,并指出测试方法的标准化、测试环境的高温化及测试数据的模型化是未来的主要发展方向。 |
其他语种文摘
|
As a typical ceramic matrix composite (CMC), SiC_f/SiC composite has enormous potential for application in the aerospace field because of the excellent properties such as high specific strength,high temperature resistance,oxidation resistance and good thermal shock resistance. The interphase between fiber and matrix plays a crucial role for protecting fibers, transmitting load and deflecting cracks, resulting in the pseudo-plastic fracture characteristics of SiC_f/SiC composites. The design scheme of interphase significantly affects its microstructural properties, thereby affecting the macroscopic mechanical properties and damage failure modes of SiC_f/SiC composites. In recent years,nano/micro fabrication techniques based on the focused ion beam (FIB)and nano/micro mechanical testing methods based on the nanoindentation are the effective methods to analyze and extract the interphase properties of SiC_f/SiC composites. The existing design schemes of interphase and the influence of interphase properties on toughening mechanism are reviewed. And also the application conditions,advantages and disadvantages of small-scale mechanical testing techniques including single fiber push-out/push-in and micropillar compression are summarized. Finally, the development trend for the research of CMC interphase properties are prospected: further standardizing the testing methods, building a hightemperature testing platform and modeling of testing data. |
来源
|
航空材料学报
,2024,44(5):174-186 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2024.000134
|
关键词
|
SiC_f/SiC陶瓷基复合材料
;
界面相
;
增韧机制
;
小尺寸力学测试技术
;
界面相微区性能
|
地址
|
1.
北京航空航天大学材料科学与工程学院, 北京, 100191
2.
天目山实验室, 天目山实验室, 杭州, 311115
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
航空 |
基金
|
国家自然科学基金
;
中国航空发动机集团产学研合作项目
|
文献收藏号
|
CSCD:7851429
|
参考文献 共
65
共4页
|
1.
Naslain R.
High temperature ceramic matrix composites,1993
|
CSCD被引
1
次
|
|
|
|
2.
成来飞.
陶瓷基复合材料强韧化与应用基础,2019
|
CSCD被引
3
次
|
|
|
|
3.
周瑞发.
高温结构材料,2006
|
CSCD被引
11
次
|
|
|
|
4.
Padture N P. Advanced structural ceramics in aerospace propulsion.
Nature Materials,2016,15(8):804-809
|
CSCD被引
15
次
|
|
|
|
5.
Zhang Q M. Research on CMC for aerospace applications.
Aerospace Materials & Technology,2011,6:1-3
|
CSCD被引
2
次
|
|
|
|
6.
刘虎. 国外航空发动机用SiC_f/SiC复合材料的材料级性能测试研究进展.
材料工程,2018,46(11):1-12
|
CSCD被引
24
次
|
|
|
|
7.
张俊敏. 连续纤维增强陶瓷基复合材料研究与应用进展.
陶瓷学报,2023,44(2):195-207
|
CSCD被引
5
次
|
|
|
|
8.
Naslain R R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview.
Composites Science and Technology,2004,64(2):155-170
|
CSCD被引
1
次
|
|
|
|
9.
Evans A G. The role of interfaces in fiber-reinforced brittle matrix composites.
Composites Science and Technology,1991,42(1/3):3-24
|
CSCD被引
1
次
|
|
|
|
10.
Naslain R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites.
Composites Part A,1998,29(9/10):1145-1155
|
CSCD被引
49
次
|
|
|
|
11.
Rawlins M H. Interfacial characterizations of fiber-reinforced SiC composites exhibiting brittle and toughened fracture behavior.
MRS Online Proceedings Library,1986,78:223-230
|
CSCD被引
1
次
|
|
|
|
12.
Yu H. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases.
Materials & Design,2013,44:320-324
|
CSCD被引
1
次
|
|
|
|
13.
Verdenelli M. Sol-gel preparation and thermo-mechanical properties of porous xAl_2O_3-ySiO_2 coatings on SiC Hi-Nicalonfibres.
Journal of the European Ceramic Society,2003,23(8):1207-1213
|
CSCD被引
1
次
|
|
|
|
14.
Naslain R. Fibre-matrix interphases and interfaces in ceramic matrix composites processed by CVI.
Composite Interfaces,1993,1(3):253-286
|
CSCD被引
2
次
|
|
|
|
15.
Han X. Effect of heat treatment on the microstructure and mechanical behavior of SiC/SiC mini-composites.
Materials Science and Engineering: A,2019,746:94-104
|
CSCD被引
8
次
|
|
|
|
16.
Udayakumar A. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI.
Journal of the European Ceramic Society,2011,31(6):1145-1153
|
CSCD被引
1
次
|
|
|
|
17.
Lu Z L. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500℃in air.
Journal of the European Ceramic Society,2020,40(8):2821-2827
|
CSCD被引
1
次
|
|
|
|
18.
Al Nasiri N. Oxidation behaviour of SiC/SiC ceramic matrix composites in air.
Journal of the European Ceramic Society,2016,36(14):3293-3302
|
CSCD被引
2
次
|
|
|
|
19.
Collier V E. Recession of BN coatings in SiC/SiC composites through reaction with water vapor.
Journal of the American Ceramic Society,2022,105(1):498-511
|
CSCD被引
1
次
|
|
|
|
20.
Bertrand S. Influence of strong fiber/coating interfaces on the mechanical behavior and lifetime of Hi-Nicalon/(PyC/SiC)n/SiC minicomposites.
Journal of the American Ceramic Society,2001,84(4):787-794
|
CSCD被引
1
次
|
|
|
|
|