p型PbSe热电材料研究进展:从中温区发电到近室温制冷
Research progress in p-type PbSe thermoelectric materials:from mediumtemperature power generation to near-room-temperature cooling
查看参考文献62篇
文摘
|
热电材料能够实现电能和热能高效且清洁的相互转化,在余热回收和电子制冷方面具有重要的应用前景。碲化铅(PbTe)材料已经应用于深空探测领域的温差发电电源,硒化铅(PbSe)材料作为PbTe的同族类似物,有望作为其更为储量丰富、价格低廉的替代品,在中温区温差发电中展现出重要应用前景。近年来,对无Te热电冷却材料和器件需求不断增长,PbSe的研究方向逐渐从中温区发电转向近室温制冷。本文回顾了p型PbSe材料研究进程中所采用的典型优化策略,概述了基于该材料的热电发电和制冷器件的关键研究进展,展示了这一材料重要的发展前景。最后,对未来如何实现p型PbSe材料近室温热电性能的充分开发以及高性能热电制冷器件的制造进行了总结展望,包括整合各种优化策略,优化器件组装技术,确定合适的接触材料,以及开发基于PbSe的无Te热电器件,以推进其在深空探测、激光制冷等关键领域的实际应用。 |
其他语种文摘
|
Thermoelectric materials can efficiently and cleanly convert between electrical and thermal energy,offering significant prospects in waste heat recovery and electronic cooling applications. Lead telluride(PbTe) materials were used in thermoelectric power sources for deep space exploration. Lead selenide(PbSe), a homologue of PbTe, shows potential as a more abundant and cost-effective alternative for mid-temperature thermoelectric power generation. Recently,research in PbSe thermoelectric has shifted from mid-temperature power generation to near-room-temperature cooling,driven by the growing demand for Te-free thermoelectric cooling materials and devices. This paper reviewed the typical optimization strategies used in the research of p-type PbSe, summarized the key research progress in thermoelectric devices based on this material,and highlighted its significant development prospects. Finally, we provide a personal outlook on developing the near-room-temperature thermoelectric performance of p-type PbSe materials and manufacturing high-performance cooling devices, which includes integrating various optimization strategies, optimizing device assembly techniques,identifying suitable contact materials,and developing Te-free thermoelectric devices based on PbSe,with the goal of advancing their application in critical fields such as deep space exploration and laser cooling. |
来源
|
航空材料学报
,2024,44(5):117-128 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2024.000114
|
关键词
|
热电材料
;
p型PbSe
;
热电器件
;
载流子迁移率
;
热电优值
|
地址
|
1.
北京航空航天大学材料科学与工程学院, 北京, 100191
2.
北京航空航天大学北航学院, 北京, 100191
3.
天目山实验室, 天目山实验室, 杭州, 311115
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术;航空 |
基金
|
国家教育部高等学校学科创新引智计划项目
;
北京市杰出青年科学基金项目
;
国家自然科学基金项目
;
国家重点研发计划项目
;
国家自然科学基金国家杰出青年科学基金
;
博士后创新人才支持计划
;
中国博士后科学基金
|
文献收藏号
|
CSCD:7851425
|
参考文献 共
62
共4页
|
1.
邓元. 柔性热电薄膜器件的研究进展.
航空学报,2014,35(10):2733-2746
|
CSCD被引
8
次
|
|
|
|
2.
张宗委. 热电能源材料研究进展.
硅酸盐学报,2018,46(2):288-305
|
CSCD被引
7
次
|
|
|
|
3.
Qin Y. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi_2Te_3.
Science,2024,383(6688):1204-1209
|
CSCD被引
13
次
|
|
|
|
4.
Xiao Y. Advanced average power factor and ZT value in PbSe thermoelectric with dual interstitials doping.
Energy & Environmental Science,2024,17:2018-2027
|
CSCD被引
1
次
|
|
|
|
5.
Jiang B. High-entropy-stabilized chalcogenides with high thermoelectric performance.
Science,2021,371(6531):830-834
|
CSCD被引
64
次
|
|
|
|
6.
Liu S. Lattice plainification leads to high thermoelectric performance of p-type PbSe crystals.
Advanced Materials,2024,36(25):2401828
|
CSCD被引
3
次
|
|
|
|
7.
Liu D. Lattice plainification advances highly effective SnSe crystalline thermoelectrics.
Science,2023,380(6647):841-846
|
CSCD被引
21
次
|
|
|
|
8.
Qin B. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments.
Science,2021,373(6554):556-561
|
CSCD被引
45
次
|
|
|
|
9.
Su L. High thermoelectric performance realized through manipulating layered phonon-electron decoupling.
Science,2022,375(6587):1385-1389
|
CSCD被引
30
次
|
|
|
|
10.
Shi H. Realizing high in-plane carrier mobility in n-type SnSe crystals through deformation potential modification.
Energy & Environmental Science,2023,16(7):3128-3136
|
CSCD被引
1
次
|
|
|
|
11.
He W. High thermoelectric performance in low-cost SnS_(0.91)Se_(0.09) crystals.
Science,2019,365(6460):1418-1424
|
CSCD被引
50
次
|
|
|
|
12.
Zheng J. Modulation doping leads to optimized thermoelectric properties in n-type Bi_6Cu_2Se_4O_6 due to interface effects.
Advanced Functional Materials,2023,33(21):2300447
|
CSCD被引
1
次
|
|
|
|
13.
Zheng J. Microstructure optimization in the shear-exfoliated Bi_6Cu_2Se_4O_6 through introducing reduced graphene oxide leads to wide-ranged thermoelectric performance.
Advanced Functional Materials,2024,34(33):2401735
|
CSCD被引
1
次
|
|
|
|
14.
Imasato K. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance.
Advanced Materials,2020,32(16):1908218
|
CSCD被引
1
次
|
|
|
|
15.
Sun Y. Rational design from materials to devices enables an efficiency of 10.5% based on thermoelectric (Bi, Sb) 2Te3 and Mg3(Bi, Sb) 2 for power generation.
Energy & Environmental Science,2024,17(2):738-747
|
CSCD被引
1
次
|
|
|
|
16.
Xie L. Screening strategy for developing thermoelectric interface materials.
Science,2023,382(6673):921-928
|
CSCD被引
8
次
|
|
|
|
17.
Liu S. Evaluation on the thermoelectric cooling ability of PbTe.
ACS Applied Energy Materials,2021,4(10):11813-11818
|
CSCD被引
1
次
|
|
|
|
18.
Parker D. High-temperature thermoelectric performance of heavily doped PbSe.
Physical Review B,2010,82(3):035204
|
CSCD被引
1
次
|
|
|
|
19.
Zhu Y. Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe.
Nature Communications,2022,13(1):4179
|
CSCD被引
1
次
|
|
|
|
20.
Sun J. Strategies for boosting thermoelectric performance of PbSe: a review.
Chemical Engineering Journal,2022,431(4):133699
|
CSCD被引
1
次
|
|
|
|
|