先进航空发动机高温功能涂层研究进展
Research progress in high temperature functional coatings for advanced aeroengines
查看参考文献216篇
文摘
|
航空发动机是飞机的“心脏”。先进航空发动机正在向高推重比、高效率、低油耗和长寿命方向发展。以热障涂层、热/环境障复合涂层、高温隐身涂层等为代表的高温功能涂层应用于航空发动机关键热端部件,起着提升发动机服役性能、服役寿命和安全可靠性的重要作用。本文以热障涂层、热/环境障复合涂层、高温隐身涂层等为例,系统概述了近年来国内外以及北京航空航天大学在高温功能涂层材料设计、涂层制备科学与技术、涂层性能评价表征等方面的研究进展,并展望了先进航空发动机新型高温功能涂层所面临的挑战和发展动向。未来先进高温功能涂层的研究重点将集中在多功能复合涂层、极端环境适应性和工艺适配性等方面。 |
其他语种文摘
|
The aircraft engine is considered the “heart” of the aircraft. The development of advanced aircraft engines focuses on achieving a high thrust-to-weight ratio, high efficiency, low fuel consumption, and extended operational life. High-temperature functional coatings, such as thermal barrier coatings(TBCs), thermal/environmental barrier composite coatings(T/EBCs), and high-temperature stealth coatings, are applied to critical hot-end components of aircraft engines. These coatings play a significant role in enhancing the service performance, operational life, safety and reliability of the engine. Taking TBCs, T/EBCs, and hightemperature stealth coatings as examples,this paper provides a systematic overview of recent research progress in the design of hightemperature functional coating materials, coating preparation science and technology, and coating performance evaluation and characterization, both domestically and internationally, with a specific focus on the advancements made at Beihang University. Furthermore,challenges and development trends faced by new high-temperature functional coatings of advanced aircraft engines in the future are also discussed. In the future, the research focus of advanced high-temperature functional coatings will shift toward multifunctional composite coatings,enhanced adaptability to extreme environments,and improved process compatibility. |
来源
|
航空材料学报
,2024,44(5):48-69 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2024.000117
|
关键词
|
热障涂层
;
热/环境障复合涂层
;
高温隐身涂层
;
涂层制备技术
|
地址
|
1.
北京航空航天大学材料科学与工程学院, 北京, 100191
2.
高温结构材料与涂层技术工信部重点实验室, 高温结构材料与涂层技术工信部重点实验室, 北京, 100191
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺;航空 |
文献收藏号
|
CSCD:7851421
|
参考文献 共
216
共11页
|
1.
文生琼. 热障涂层在航空发动机涡轮叶片上的应用.
燃气涡轮试验与研究,2009,22(1):59-62
|
CSCD被引
12
次
|
|
|
|
2.
Perepezko J H. The hotter the engine,the better.
Science,2009,326(5956):1068-1069
|
CSCD被引
102
次
|
|
|
|
3.
卫海洋. 涡轮叶片冷却技术的发展及关键技术.
飞航导弹,2012(2):61-64
|
CSCD被引
4
次
|
|
|
|
4.
徐惠彬. 航空发动机热障涂层材料体系的研究.
航空学报,2000,21(1):7-12
|
CSCD被引
65
次
|
|
|
|
5.
郭洪波. EB-PVD梯度热障涂层的热循环失效机制.
金属学报,2001,37(2):151-155
|
CSCD被引
13
次
|
|
|
|
6.
温泉. 热障涂层技术发展.
航空动力,2021(5):60-64
|
CSCD被引
8
次
|
|
|
|
7.
郭洪波. 等离子物理气相沉积热障涂层研究.
航空制造技术,2015(22):26-31
|
CSCD被引
14
次
|
|
|
|
8.
Cao X. Ceramic materials for thermal barrier coatings.
Journal of the European Ceramic Society,2004,24(1):1-10
|
CSCD被引
220
次
|
|
|
|
9.
Clarke D R. Thermal barrier coating materials.
Materials Today,2005,8(6):22-29
|
CSCD被引
101
次
|
|
|
|
10.
Vassen R. Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings.
Materials Science and Engineering:A,2001,303(1/2):100-109
|
CSCD被引
16
次
|
|
|
|
11.
Wei Z Y. Progress in ceramic materials and structure design toward advanced thermal barrier coatings.
Journal of Advanced Ceramics,2022,11(7):985-1068
|
CSCD被引
52
次
|
|
|
|
12.
Guo L. Phase stability and thermal conductivity of RE2O_3 (RE=La, Nd, Gd, Yb) and Yb_2O_3 co-doped Y_2O_3 stabilized ZrO_2 ceramics.
Ceramics International,2016,42(6):7360-7365
|
CSCD被引
20
次
|
|
|
|
13.
Bakan E. Ceramic top coats of plasmasprayed thermal barrier coatings: materials, processes, and properties.
Journal of Thermal Spray Technology,2017,26(6):992-1010
|
CSCD被引
23
次
|
|
|
|
14.
Dai M. Investigation of microstructure changes in Al_2O_3-YSZ coatings and YSZ coatings and their effect on thermal cycle life.
Journal of Advanced Ceramics,2022,11(2):345-353
|
CSCD被引
3
次
|
|
|
|
15.
曹学强. 热障涂层材料.
功能材料信息,2007,4(5):55-56
|
CSCD被引
3
次
|
|
|
|
16.
Smialek J L. Revisiting the birth of 7YSZ thermal barrier coatings:stephan stecura.
Coatings,2018,8(7)
|
CSCD被引
1
次
|
|
|
|
17.
Gildersleeve V E J J. Thermally sprayed functional coatings and multilayers: a selection of historical applications and potential pathways for future innovation.
Journal of Thermal Spray Technology,2023,32(4):778-817
|
CSCD被引
1
次
|
|
|
|
18.
Virkar A V. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia.
Journal of the American Ceramic Society,1986,69(10):224-226
|
CSCD被引
3
次
|
|
|
|
19.
Bravo-Leon A. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content.
Acta Materialia,2002,50(18):4555-4562
|
CSCD被引
5
次
|
|
|
|
20.
郑蕾. 新一代超高温热障涂层研究.
航空材料学报,2012,32(6):14-24
|
CSCD被引
49
次
|
|
|
|
|