一种高强钛合金疲劳裂纹扩展行为
Fatigue crack propagation behavior of high strength titanium alloy
查看参考文献21篇
文摘
|
高强Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe(Ti-5321)合金是顺应我国新一代飞机对高性能钛合金的需求设计而开发的一种新型高强损伤容限型钛合金。以Ti-5321合金为研究对象,构造等轴组织(EM)、网篮组织(BW)和细网篮组织(F-BW)三种典型组织,研究拉伸及疲劳裂纹扩展行为,利用光学显微镜(OM)和扫描电镜(SEM)观察组织和断口,揭示高强钛合金Paris及失稳扩展区的疲劳裂纹扩展机制。结果表明:三种组织试样的抗拉强度均在1200 MPa以上,且整个裂纹扩展阶段均表现出优异的疲劳裂纹扩展抗力;细网篮组织疲劳裂纹扩展抗力最高,等轴组织疲劳裂纹扩展抗力最低;Paris区及失稳扩展区疲劳裂纹主要以穿过初生α相和沿着初生α相两种方式进行扩展,裂纹扩展方式与α相的晶体学取向密切相关,裂纹倾向于穿过有利于(1011)<1210>锥滑移的α丛域,绕过有利于(1010)<1210>柱滑移的α丛域。 |
其他语种文摘
|
High strength Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe(Ti-5321) alloy is a new type of high strength tolerance titanium alloy designed and developed to meet the demand of high performance titanium alloy for new generation aircraft in China. Ti-5321 alloy with equiaxed microstructure(EM),basket-weave microstructure(BW) and fine basket-weave microstructure(F-BW)was obtained by forging and heat treatment,and the tensile properties and fatigue crack growth behavior were studied. Fatigue crack propagation mechanisms in Paris and unstable propagation regimes were revealed by analyzing the microstructures and fracture morphology using optical microscopy (OM) and scanning electron microscopy (SEM). The results show that the samples with EM, BW and F-BW exhibit the excellent fatigue crack propagation resistance with the tensile strength of 1200 MPa. The sample with F-BW presents the highest fatigue crack propagation resistance in Paris and rapid growth regimes,while the sample with EM presents the lowest fatigue crack propagation resistance. In F-BW, the crack mainly propagates through and along α phase. Crack tends to propagate across colony oriented for (1010) <1210> pyramidal slip and propagates along colony oriented for (1010) <1210> prismatic planes. |
来源
|
航空材料学报
,2024,44(2):176-183 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000154
|
关键词
|
Ti-5321合金
;
细网篮组织
;
断口形貌
;
疲劳裂纹扩展机制
|
地址
|
西北有色金属研究院, 西安, 710016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家科技部重点研发项目
;
陕西省博士后科研项目
|
文献收藏号
|
CSCD:7851415
|
参考文献 共
21
共2页
|
1.
Banerjee D. Perspective on titanium science and technology.
Acta Materials,2013,61(3):844-879
|
CSCD被引
18
次
|
|
|
|
2.
朱知寿. 我国航空用钛合金技术研究现状及发展.
航空材料学报,2014,34(4):44-50
|
CSCD被引
65
次
|
|
|
|
3.
赵永庆. 高强高韧损伤容限型钛合金TC21研制.
钛工业进展,2004,21(1):22-24
|
CSCD被引
79
次
|
|
|
|
4.
赵永庆. 1200 MPa级新型高强韧钛合金.
中国材料进展,2016,35(12):914-918
|
CSCD被引
8
次
|
|
|
|
5.
周伟. Ti5321钛合金BASCA处理不同冷却速度下的片层形态和性能研究.
稀有金属材料与工程,2020,49(7):2314-2381
|
CSCD被引
2
次
|
|
|
|
6.
周伟. 新型Ti5321合金片层组织的热变形行为.
钛工业进展,2018,35(5):25-28
|
CSCD被引
1
次
|
|
|
|
7.
Wu C. Effect of cooling rate on α variant selection and microstructure evolution in a near β Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy.
Journal of Alloys and Compounds,2020,841:155728
|
CSCD被引
3
次
|
|
|
|
8.
Wu C. New insight in the development of α phase during continuously heating in a β-quenched Ti-5321 alloy.
Journal of Materials Science & Technology,2022,103:29-33
|
CSCD被引
1
次
|
|
|
|
9.
Ren L. Microstructural tailoring and mechanical properties of a multialloyed near β titanium alloy Ti-5321 with various heat treatment.
Materials Science and Engineering: A,2017,711:553-561
|
CSCD被引
1
次
|
|
|
|
10.
Song B. Effects of cryogenic treatments on phase transformations, microstructure and mechanical properties of near β Ti alloy.
Journal of Alloys and Compounds,2021,879:160495
|
CSCD被引
3
次
|
|
|
|
11.
Wang H. Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy.
Materials Science and Engineering: A,2021,821:141626
|
CSCD被引
9
次
|
|
|
|
12.
Wang H. Plane strain fracture behavior of a new high strength Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy during heat treatment.
Materials Science and Engineering:A,2020,797:140080
|
CSCD被引
5
次
|
|
|
|
13.
Wang H. Microstructure evolution and fracture behavior of Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy during BASCA heat treatments.
Materials Characterization,2021,174:11075
|
CSCD被引
1
次
|
|
|
|
14.
Wang H. Forgingmicrostructure-tensile properties correlation in a new near β high strength titanium alloy.
Rare Metals,2021,40(8):2109-2117
|
CSCD被引
4
次
|
|
|
|
15.
王欢. 高强韧钛合金热加工技术与显微组织.
航空材料学报,2018,38(4):56-63
|
CSCD被引
12
次
|
|
|
|
16.
Meyers M A. Mechanical behavior of materials.
Materials Today,2005,8(2):83-85
|
CSCD被引
1
次
|
|
|
|
17.
Launey M E. On the fracture toughness of advanced materials.
Advance Materials,2009,21(20):2103-2110
|
CSCD被引
6
次
|
|
|
|
18.
Sadananda K. Fatigue crack growth behavior of titanium alloys.
International Journal of Fatigue,2005,27(10/12):1255-1266
|
CSCD被引
2
次
|
|
|
|
19.
Lutjering G.
Titanium,2007:182-185
|
CSCD被引
1
次
|
|
|
|
20.
Sauer C. Influence of α layers at β grain boundaries on mechanical properties of Ti-alloys.
Materials Science and Engineering: A,2001,319:393-397
|
CSCD被引
15
次
|
|
|
|
|