辊压温度对锂离子电池正极微观结构及性能的影响
Effect of calendaring temperature on microstructure and properties for Li-ion batteries cathode
查看参考文献15篇
文摘
|
为探究电极制备工艺中辊压温度对锂电池正极极片微观结构与电极性能间的关系,利用二辊轧机,制备了辊压温度为25 ℃和150 ℃两种正极极片,研究了辊压温度对正极极片微观结构、厚度一致性、力学性能及电化学性能的影响。结果表明,随着辊压温度的提高,极片涂层颗粒压实密度显著提高,孔径较小,炭胶相均匀分布黏附在活性颗粒上,涂层颗粒破碎、裂纹及孔洞等缺陷减少,涂层更容易形成导电/黏结网络的电极结构。相比于室温辊压极片,热辊压极片辊压厚度一致性提高,回弹率降低了50%,极片结合强度由182.77 N/m提高至237.37 N/m,提高了29.87%;抗拉强度由20.47 MPa提高至24.44 MPa,提高了19.39%;极片电阻率由158.05 Ω·cm降低至119.41 Ω·cm,降低了24.45%;电导率由0.63 S/m提高至0.84 S/m,提高了33.33%。两种极片所组装的电池,热辊压极片的电化学性能优于室温辊压极片,循环容量保持率提高了18.65%。本研究通过调控辊压温度等工艺参数来优化电极性能,可以适度提高极片性能,对锂电池极片工业化制备过程中优化电极性能提供了研究依据。 |
其他语种文摘
|
To investigate the relationship between calendaring temperature and the microstructure and performance of cathode for Li-ion batteries (LIBs),two kinds of cathodes at calendaring temperatures of 25 ℃ and 150 ℃ were prepared by two-high rolling mill,respectively.The effects of calendaring temperature on microstructure,thickness consistency,mechanical,and electrochemical properties of cathode were studied.The results show that with the increasing calendaring temperature,the compaction density of cathode coating particles increases significantly,the pore size is smaller,the carbon adhesive phase is uniformly distributed on the active particles,the coating particles are broken,cracks,holes,and other defects decrease,and the cathode structure of conductive/bonding network is easier to form.Compared with the room-temperature calendaring cathode,the thickness consistency of hot calendaring cathode is improved,the rebound rate is reduced by 50%,and the pole sheet bond strength increases from 182.77 N/m to 237.37 N/m,increasing 29.87%.The tensile strength increases from 20.47 MPa to 24.44 MPa,increasing 19.39%.The electrode resistivity decreases from 158.05 Ω·cm to 119.41 Ω·cm,decreasing 24.45%.The electrical conductivity increases from 0.63 S/m to 0.84 S/m,increasing 33.33%.After being assembled as LIBs,the electrochemical performance of the hot calendaring cathode is better than that of the room-temperature calendaring cathode.The cycling capacity retention increases by 18.65%.The cathode performance can be improved moderately by adjusting the calendaring temperature and other technological parameters,providing a research basis for optimizing cathode performance during the LIBs electrodes industrial preparation. |
来源
|
材料工程
,2024,52(11):158-165 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000352
|
关键词
|
锂离子电池
;
辊压温度
;
微观结构
;
力学性能
;
电化学性能
|
地址
|
1.
河北科技大学材料科学与工程学院, 河北省材料近净成形技术重点实验室, 石家庄, 050018
2.
河北科技大学机械工程学院, 石家庄, 050018
3.
邢台纳科诺尔精轧科技股份有限公司, 河北, 邢台, 054001
4.
沧州惠邦机电(集团)有限公司, 河北省精密冲裁工艺与模具工程技术研究中心, 河北, 沧州, 061500
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;化学工业 |
基金
|
河北省高等学校科学技术研究项目
;
河北省重点研发计划项目
;
邢台市重大科技专项
|
文献收藏号
|
CSCD:7850559
|
参考文献 共
15
共1页
|
1.
韩富娟. 高镍三元锂离子电池低温放电性能研究进展.
材料工程,2022,50(9):1-17
|
CSCD被引
3
次
|
|
|
|
2.
何仁杰. 锂离子电池厚电极结构设计的研究进展.
材料工程,2022,50(10):38-54
|
CSCD被引
3
次
|
|
|
|
3.
黄梦涛. 锂电池极片缺陷特征融合与分类.
制造业自动化,2021,43(10):61-63
|
CSCD被引
3
次
|
|
|
|
4.
冯晓晗. 磷酸铁锂正极材料改性研究进展.
储能科学与技术,2022,11(2):467-486
|
CSCD被引
7
次
|
|
|
|
5.
吴彩云. 层状镍钴锰酸锂三元正极材料的研究进展.
电池,2022,52(1):3-7
|
CSCD被引
5
次
|
|
|
|
6.
肖艳军. Numerical Simulation and Experimental Study on the Rolling Process of Polar Particles.
系统仿真学报,2018,30(11):4141-4150
|
CSCD被引
1
次
|
|
|
|
7.
徐兴无. 不同辊压厚度正极片对锂离子电池内阻影响研究.
金属功能材料,2015,22(4):31-34
|
CSCD被引
3
次
|
|
|
|
8.
张俊鹏. 锂离子电池极片辊压微观结构演化与过程建模.
中国有色金属学报,2022,32(3):776-787
|
CSCD被引
3
次
|
|
|
|
9.
蒋茂林. 锂离子电池正极片的力学性能及影响因素.
电池,2019,49(3):217-220
|
CSCD被引
1
次
|
|
|
|
10.
Bockholt H. The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties.
Journal of Power Sources,2016,325(1):140-151
|
CSCD被引
11
次
|
|
|
|
11.
Park Y S. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries.
Journal of Power Sources,2014,248(15):1191-1196
|
CSCD被引
6
次
|
|
|
|
12.
Schreiner A. Modeling of the calendering process for lithium-ion batteries with dem simulation.
Procedia CIRP,2020,93:149-155
|
CSCD被引
1
次
|
|
|
|
13.
Meyer C. Characterization of the calendering process for compaction of electrodes for lithium-ion batteries.
Journal of Materials Processing Technology,2017,249:172-178
|
CSCD被引
10
次
|
|
|
|
14.
Heubner C. Understanding thickness and porosity effects on the electrochemical performance of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2-based cathodes for high energy Li-ion batteries.
Journal of Power Sources,2019,419(15):119-126
|
CSCD被引
7
次
|
|
|
|
15.
Yoon M. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries.
Nature Energy,2021,6:362-371
|
CSCD被引
38
次
|
|
|
|
|