SLM成形AlSi10Mg合金及SiC/AlSi10Mg复合材料的耐蚀和耐磨性能
Anti-corrosion and wear resistance properties of AlSi10Mg alloy and SiC/AlSi10Mg composites fabricated by selective laser melting
查看参考文献18篇
文摘
|
利用SLM成形制备SiC/AlSi10Mg复合材料,采用XRD,SEM,EDS,EBSD,电化学方法和摩擦磨损实验分析其物相特征、微观组织和耐蚀、耐磨性能,并与SLM成形AlSi10Mg合金进行对比。结果表明:在3.5%(质量分数)NaCl溶液中,SLM成形SiC/AlSi10Mg试样的腐蚀电流密度(2.0827 μA/cm~2)小于SLM成形AlSi10Mg试样的腐蚀电流密度(3.389 μA/cm~2),同时SLM成形SiC/AlSi10Mg试样表面钝化膜的厚度(7.1 nm)大于AlSi10Mg试样表面钝化膜的厚度(1.9 nm),说明SLM成形SiC/AlSi10Mg试样耐蚀性能更优。究其原因为,SiC加入后引起晶粒细化、大角度晶界比例增多及铝基体连续性破坏,进而导致腐蚀速率减缓,耐蚀性能增强。此外,与SLM成形AlSi10Mg合金的硬度(103.58±7.41)HV0.2相比,SLM成形SiC/AlSi10Mg复合材料的硬度(207.68±16.02)HV_(0.2)大约是前者的2倍,硬度明显提高,耐磨性能增强;SLM成形AlSi10Mg和SiC/AlSi10Mg的磨损机制均以磨料磨损和氧化磨损为主。 |
其他语种文摘
|
The SiC/AlSi10Mg composites were fabricated via selective laser melting(SLM). The phase characteristics, microstructure, anti-corrosion and wear resistance properties of SLM SiC/AlSi10Mg and SLM AlSi10Mg samples were investigated by XRD, SEM, EDS, EBSD, electrochemical test, and friction and wear test. The results show that in the 3.5% (mass fraction) NaCl solution, the corrosion current density of SLM SiC/AlSi10Mg (2.0827 μA/cm~2) is lower than that of SLM AlSi10Mg (3.389 μA/cm~2), and the passivation film on the surface of SLM SiC/AlSi10Mg (7.1 nm) is thicker than that of SLM AlSi10Mg(1.9 nm), indicating the SLM SiC/AlSi10Mg sample has better corrosion resistance than that of SLM AlSi10Mg. The reason can be attributed to that the addition of SiC causes the grain refinement, the increase of high grain boundary, and the interruption of the continuity of Al matrix, leading to the decrease of corrosion rate and the increase of corrosion resistance. In addition, the average microhardness for SLM SiC/AlSi10Mg composites (207.68±16.02)HV0.2 is twice that of SLM AlSi10Mg alloy(103.58±7.41)HV_(0.2), indicating its hardness and wear resistance are improved. Both the wear mechanisms of SLM AlSi10Mg and SiC/AlSi10Mg composites are mainly abrasive wear and oxidation wear. |
来源
|
材料工程
,2024,52(10):97-105 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000435
|
关键词
|
激光选区熔化
;
SiC/AlSi10Mg复合材料
;
腐蚀
;
耐磨性
|
地址
|
1.
重庆理工大学材料科学与工程学院, 重庆, 400054
2.
中国科学院重庆绿色智能技术研究院, 智能增材制造技术与系统重庆市重点实验室, 重庆, 400714
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
重庆市教委项目
|
文献收藏号
|
CSCD:7840337
|
参考文献 共
18
共1页
|
1.
Debroy T. Additive manufacturing of metallic components-process, structure and properties.
Progress in Materials Science,2018,92:112-224
|
CSCD被引
403
次
|
|
|
|
2.
Ashwath P. Selective laser melting of Al-Si-10Mg alloy: microstructural studies and mechanical properties assessment.
Journal of Materials Research and Technology,2022,17:2249-2258
|
CSCD被引
3
次
|
|
|
|
3.
Zakaria H M. Microstructural and corrosion behavior of Al/SiC metal matrix composites.
Ain Shams Engineering Journal,2014,5(3):831-838
|
CSCD被引
13
次
|
|
|
|
4.
Singh J. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables.
Ceramics International,2016,42(1):56-81
|
CSCD被引
11
次
|
|
|
|
5.
Knowles A J. Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles.
Journal of Alloys and Compounds,2014,615:401-405
|
CSCD被引
10
次
|
|
|
|
6.
Liu X L. Effects of processing parameters and post-process heat treatment on selective laser melted SiC/AlSi10Mg composites.
Materials Letters,2022,308:131254
|
CSCD被引
1
次
|
|
|
|
7.
Xue G. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: densification, microstructure and mechanical properties.
Materials Science and Engineering:A,2019,764:138155
|
CSCD被引
10
次
|
|
|
|
8.
Zhao X. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites.
Vacuum,2019,160:189-196
|
CSCD被引
16
次
|
|
|
|
9.
Xie H B. Selective laser melting of SiCp/Al composites: densification, microstructure, and mechanical and tribological properties.
Ceramics International,2021,47:30826-30837
|
CSCD被引
3
次
|
|
|
|
10.
Lu Q. Fatigue performance and material characteristics of SiC/AlSi10Mg composites by selective laser melting.
Materials Science and Engineering:A,2022,858:144163
|
CSCD被引
3
次
|
|
|
|
11.
邹田春. 激光选区熔化纳米SiC/AlSi_7Mg复合材料微观组织及力学性能.
材料工程,2022,50(12):143-151
|
CSCD被引
2
次
|
|
|
|
12.
Zhang L. Mechanical properties and corrosion behavior of Al/SiC composites.
Journal of Alloys and Compounds,2016,678:23-30
|
CSCD被引
9
次
|
|
|
|
13.
Darmiani E. Corrosion investigation of Al-SiC nano-composite fabricated by accumulative roll bonding (ARB) process.
Journal of Alloys and Compounds,2013,552:31-39
|
CSCD被引
7
次
|
|
|
|
14.
Trisnanto S R. Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion.
Corrosion Science,2022,196:110009
|
CSCD被引
4
次
|
|
|
|
15.
Orazem M E. On the use of the power-law model for interpreting constant-phaseelement parameters.
Journal of the Brazilian Chemical Society,2014,25:532-539
|
CSCD被引
3
次
|
|
|
|
16.
Zhang B. Electrochemical corrosion behaviour of microcrystalline aluminium in acidic solutions.
Corrosion Science,2007,49:2071-2082
|
CSCD被引
10
次
|
|
|
|
17.
Hirschorn B. Determination of effective capacitance and film thickness from constant-phase-element parameters.
Electrochimica Acta,2010,55:6218-6227
|
CSCD被引
63
次
|
|
|
|
18.
Cao C. Improved strength and enhanced pitting corrosion resistance of Al-Mn alloy with Zr addition.
Materials Letters,2019,255:126535
|
CSCD被引
4
次
|
|
|
|
|