基于三阶段共享互馈网络DEA的知识创新效率评价
Knowledge Innovation Efficiency Evaluation Based on Three-Stage Network DEA with Shared Resources and Mutual Feedback
查看参考文献31篇
文摘
|
在复杂的系统中,资源分配和系统内部交互是研究系统创新效率时需要重视的因素,但在以往的相关研究中并没有考虑到系统内部之间的相互反馈作用.基于此文章拓展了三阶段共享网络DEA模型,将系统内部子系统间存在的互馈作用纳入模型研究范围,证明了系统有效的充分必要条件,定义了系统有效和阶段有效.对54所中国高等院校的知识创新效率进行测度,将知识创新系统分为知识生产阶段和知识应用阶段,对比了不同阶段侧重方法(GP1:侧重第一阶段;GP3:侧重第三阶段)的差异,研究结果表明:不存在系统有效的DMU;相较于GP3,GP1会低估知识应用效率,且会降低各DMU知识生产效率的区分度.文章还针对不同特性对各样本高校展开分析,并给出相关政策、措施建议. |
其他语种文摘
|
In complex system, resource allocation and internal interaction of the system are key factors that need to be paid attention to when studying the innovation efficiency of the system, but in previous related researche, scholars did not take the mutual feedback between divisions inside the system into account. Based on what we mentioned, this paper has expanded the previous model and constructed a three-stage network DEA model with shared resources, incorporating the interaction effect between the internal divisions of the system. We prove the necessary and sufficient conditions of effective system and define effectiveness of the system and each stage. We measure the knowledge innovation efficiency of 54 Chinese universities and divide the knowledge innovation system into the knowledge production stage and the knowledge application stage. Compared with the distinction of different methods(GP1: Focusing on the first stage; GP3: Focusing on the third stage), the results show that there is no DMU with systemic efficiency; Compared with GP3, GP1 will underestimate the efficiency of knowledge application and reduce the level of distinction between DMUs at the efficiency of knowledge production. This paper also analyzes various sample universities in accordance with different characteristics and puts forward relevant policies and measures. |
来源
|
系统科学与数学
,2024,44(9):2639-2658 【核心库】
|
DOI
|
10.12341/jssms23484
|
关键词
|
网络DEA
;
资源共享
;
互馈
;
知识创新
|
地址
|
1.
中国科学院科技战略咨询研究院, 北京, 100190
2.
中国科学院大学公共政策与管理学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0577 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:7803249
|
参考文献 共
31
共2页
|
1.
习近平. 高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告.
中国人大,2022(21):6-21
|
CSCD被引
2
次
|
|
|
|
2.
Charnes A. Measuring the efficiency of decision making units.
European Journal of Operational Research,1978,2(6):429-444
|
CSCD被引
1397
次
|
|
|
|
3.
Fφrsund F R. A survey of frontier production functions and of their relationship to efficiency measurement.
Journal of Econometrics,1980,13(1):5-25
|
CSCD被引
6
次
|
|
|
|
4.
Banker R D. Some models for estimating technical and scale inefficiencies in data envelopment analysis.
Management Science,1984,30(9):1078-1092
|
CSCD被引
430
次
|
|
|
|
5.
Byrnes P. Measuring productive efficiency: An application to Illinois strip mines.
Management Science,1984,30(6):671-681
|
CSCD被引
7
次
|
|
|
|
6.
Kao C. Efficiency decomposition in network data envelopment analysis: A relational model.
European Journal of Operational Research,2009,192(3):949-962
|
CSCD被引
23
次
|
|
|
|
7.
Cook W D. Network DEA: Additive efficiency decomposition.
European Journal of Operational Research,2010,207(2):1122-1129
|
CSCD被引
8
次
|
|
|
|
8.
Liang L. DEA models for two-stage processes: Game approach and efficiency decomposition.
Naval Research Logistics,2008,55(7):643-653
|
CSCD被引
22
次
|
|
|
|
9.
Li Y. DEA models for extended two-stage network structures.
Omega,2012,40(5):611-618
|
CSCD被引
8
次
|
|
|
|
10.
Song A. Two-stage cooperative/non-cooperative game DEA model with decision preference: A case of Chinese industrial system.
Big Data Research,2022,28:100303
|
CSCD被引
1
次
|
|
|
|
11.
Nakabayashi K. Egoist's dilemma: A DEA game.
Omega,2006,34(2):135-148
|
CSCD被引
6
次
|
|
|
|
12.
Wu J. Two-stage DEA models with fairness concern: Modelling and computational aspects.
Omega,2021,105:102521
|
CSCD被引
1
次
|
|
|
|
13.
Chen Y. DEA model with shared resources and efficiency decomposition.
European Journal of Operational Research,2010,207(1):339-349
|
CSCD被引
14
次
|
|
|
|
14.
Wu J. Two-stage network processes with shared resources and resources recovered from undesirable outputs.
European Journal of Operational Research,2016,251(1):182-197
|
CSCD被引
5
次
|
|
|
|
15.
Chen C M. Measuring dynamic efficiency: Theories and an integrated methodology.
European Journal of Operational Research,2010,203(3):749-760
|
CSCD被引
3
次
|
|
|
|
16.
Francisco J. A dynamic multi-stage slacks-based measure data envelopment analysis model with knowledge accumulation and technological evolution.
European Journal of Operational Research,2019,278(2):448-462
|
CSCD被引
2
次
|
|
|
|
17.
Michali M. Noise-pollution efficiency analysis of European railways: A network DEA model.
Transportation Research Part D: Transport and Environment,2021,98:102980
|
CSCD被引
1
次
|
|
|
|
18.
Li Y. Environmental decoupling, ECO-efficiency improvement, and industrial network optimization: Insights from 44 sectors in China.
Journal of Cleaner Production,2022,376:134374
|
CSCD被引
3
次
|
|
|
|
19.
Ohsato S. Management efficiency in Japanese regional banks: A network DEA.
Procedia-Social and Behavioral Sciences,2015,172:511-518
|
CSCD被引
1
次
|
|
|
|
20.
Lartey T. Interbank funding, bank risk exposure and performance in the UK: A three-stage network DEA approach.
International Review of Financial Analysis,2021,75:101753
|
CSCD被引
1
次
|
|
|
|
|