基于DO指数的京津冀地区制造业协同集聚测度与动态演化
Co-agglomeration Measurement and Dynamic Evolution of Manufacturing Industry in Beijing-Tianjin-Hebei Region Based on DO Index
查看参考文献36篇
文摘
|
在新经济地理学将空间要素纳入主流经济学的研究范畴后,空间数据统计分析方法也被引入经济学文献中。以地理邻近性为基本特征的集聚经济成为重要的研究对象并逐渐成为经济地理学与GIS交叉研究的领域。Ripley's K函数属于空间点模式分析中基于距离的方法,也被称为多距离空间聚类分析,DO指数在其基础上发展而来,相比于K函数,DO指数更符合经济学中企业不完全随机分布的计算标准。本文根据2008年和2018年经济普查数据,以《中国经济普查年鉴》为参考标准,清洗数据后利用DO指数测度了京津冀协同发展战略提出前后制造业协同集聚的特征和动态演化过程。结果表明:① 2008年和2018年分别有85.47%和82.53%的制造业产业对发生协同集聚,平均强度由0.030变为0.029,10年间协同集聚的基本格局保持稳定;但协同集聚强度高的TOP 20行业对明显向河北省扩散;②协同集聚发生的尺度范围扩大,2008年全部行业对协同集聚的显著尺度范围是25~68 km,2018年则是55 km以内和75~103 km。省市边界临界值约为75 km,京津冀协同发展战略提出后制造业跨省级行政区的合作更多,而TOP 20行业对的跨行政边界特征更加明显;③制造业协同集聚呈现"两极分化"特点,行业间协同集聚强度值高的更高,但中等强度协同集聚的行业对强度值变低。2018年第一个局部高值出现的尺度为54.5 km,小于2008年的68 km,但整体上显著尺度范围又大于2008年,协同集聚的行业对空间分布尺度范围小的更小,大的更大,在一定程度上验证了协同集聚存在循环累积因果效应。 |
其他语种文摘
|
The statistical analysis methods of spatial data have also been introduced into economic literature after the new economic geography theory brought spatial elements into the research scope of mainstream economics.The agglomeration economy,with geographical proximity as its basic feature,has become an important research object and has gradually become the cross-research field of economic geography and GIS.The Ripley's K function belongs to the distance-based method in spatial point pattern analysis,also known as multi-distance spatial cluster analysis.The DO index develops on this basis.Compared with the K function,the DO index is more in line with the calculation standard of incomplete random distribution of enterprises in economics.In 2014,the coordinated development of the Beijing-Tianjin-Hebei region became a major national strategy.To verify the effectiveness of policy implementation,based on the economic census data of 2008 and 2018,we cleaned the data with the China Economic Census Yearbook as the reference standard.Then,we used the DO index to measure the characteristics and dynamic evolution process of manufacturing co-agglomeration before and after the coordinated development of the Beijing-Tianjin-Hebei region strategy was proposed.The results show that:(1) In 2008 and 2018,85.47% and 82.53% of manufacturing industry pairs respectively experienced co-agglomeration,with the average intensity changing from 0.030 to 0.029.The basic pattern of co-agglomeration remained stable over the past 10 years.However,the TOP 20 industry pairs with high co-agglomeration intensity value have shown the characteristics of obvious diffusion to Hebei Province.(2) The scale of co-agglomeration has expanded.In 2008,the significant scale of co-agglomeration for all industry pairs was 25-68 kilometers,while in 2018,it was within 55 kilometers and 75~103 kilometers.The average scale of co-agglomeration for the TOP 20 industry pairs increased from 80.91 kilometers to 125.15 kilometers.The critical value of the provincial and municipal boundaries is about 75 kilometers.After the proposal of the Beijing-Tianjin-Hebei coordinated development strategy,there has been more cooperation between manufacturing industries across provincial administrative boundaries,and this characteristic is more evident in the TOP 20 industry pairs.(3) The co-agglomeration between manufacturing industries exhibits a "polarization" characteristic.Industry pairs with high values of co-agglomeration intensity are higher,but those with medium intensity of co-agglomeration have become lower.The scale of the first local high value in 2018 was 54.5 km,smaller than 68 km in 2008,but the overall significant scale was larger than in 2008.This indicates that those with high values are higher and those with low values are lower,which to some extent verifies that there is a circular cumulative causal effect of co-agglomeration.The research results show that the coordinated development of industries in the Beijing-Tianjin-Hebei region has achieved initial success,and relieving Beijing of functions non-essential to its role as China's capital is an important driving force for the coordinated development of Beijing-Tianjin-Hebei industries at this stage. |
来源
|
地球信息科学学报
,2024,26(9):2123-2139 【核心库】
|
DOI
|
10.12082/dqxxkx.2024.240105
|
关键词
|
多距离空间聚类分析
;
DO指数
;
京津冀
;
制造业
;
协同集聚
;
企业数据
|
地址
|
1.
中国科学院地理科学与资源研究所, 北京, 100101
2.
中国科学院大学资源与环境学院, 北京, 100049
3.
中国人民大学公共管理学院, 北京, 100872
4.
中国人民大学交叉科学研究院, 北京, 100872
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
社会科学总论;自然地理学 |
基金
|
国家自然科学基金
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7801677
|
参考文献 共
36
共2页
|
1.
王缉慈.
创新的空间:企业集群与区域发展,2001
|
CSCD被引
75
次
|
|
|
|
2.
吴利学. 产业集群研究的最新进展及理论前沿.
上海行政学院学报,2004(3):51-60
|
CSCD被引
4
次
|
|
|
|
3.
夏永红. 产业共同集聚测度方法研究进展.
技术经济,2018,37(8):106-115
|
CSCD被引
4
次
|
|
|
|
4.
Ellison G. Geographic concentration in U.S. manufacturing industries: A dartboard approach.
Journal of Political Economy,1997,105(5):889-927
|
CSCD被引
141
次
|
|
|
|
5.
曾光. 产业聚集理论及进展.
江淮论坛,2005,6:5-10
|
CSCD被引
1
次
|
|
|
|
6.
赵永. 空间数据统计分析的思想起源与应用演化.
地理研究,2018,37(10):2058-2074
|
CSCD被引
6
次
|
|
|
|
7.
杨振山. 空间统计学进展及其在经济地理研究中的应用.
地理科学进展,2010,29(6):757-768
|
CSCD被引
24
次
|
|
|
|
8.
陈斐. 空间统计分析与GIS在区域经济分析中的应用.
武汉大学学报(信息科学版),2002(4):391-396
|
CSCD被引
56
次
|
|
|
|
9.
陈建军. 集聚的测度方法评述:基于前沿文献的研究.
西南民族大学学报(人文社科版),2017,38(4):134-142
|
CSCD被引
3
次
|
|
|
|
10.
Duranton G. Testing for localization using micro-geographic data.
The Review of Economic Studies,2005,72(4):1077-1106
|
CSCD被引
57
次
|
|
|
|
11.
袁海红. 产业集聚的测度及其动态变化——基于北京企业微观数据的研究.
中国工业经济,2014(9):38-50
|
CSCD被引
19
次
|
|
|
|
12.
张延吉. 北京市生产性服务业的空间集聚及影响因素——基于连续平面的测度方法.
中央财经大学学报,2017(9):111-118
|
CSCD被引
6
次
|
|
|
|
13.
陈柯. 中国工业产业空间集聚的测量及特征研究.
上海经济研究,2018(7):30-42
|
CSCD被引
5
次
|
|
|
|
14.
孟美侠. 开发区政策影响中国产业空间集聚吗——基于跨越行政边界的集聚视角.
中国工业经济,2019(11):79-97
|
CSCD被引
8
次
|
|
|
|
15.
黄宇金. 京津冀地区制造业集聚的时空演化特征和差异性分析.
地理科学进展,2021,40(12):2011-2024
|
CSCD被引
3
次
|
|
|
|
16.
Klier T. Evolving agglomeration in the U.S. auto supplier industry.
Journal of Regional Science,2008,48(1):245-267
|
CSCD被引
6
次
|
|
|
|
17.
Barlet M. Location patterns of service industries in France: A distance-based approach.
Regional Science and Urban Economics,2013,43(2):338-351
|
CSCD被引
2
次
|
|
|
|
18.
Murata Y. Localized knowledge spillovers and patent citations: A distance-based approach.
Review of Economics and Statistics,2014,96(5):967-985
|
CSCD被引
2
次
|
|
|
|
19.
Jacobs W. Co-agglomeration of knowledge-intensive business services and multinational enterprises.
Journal of Economic Geography,2014,14(2):443-475
|
CSCD被引
15
次
|
|
|
|
20.
Falck O. Is industry location persistent over time? Evidence from coagglomeration patterns between new and incumbent firms in Germany.
Review of Regional Research,2014,34(1):1-21
|
CSCD被引
2
次
|
|
|
|
|