金属有机框架/离子液体增强的质子交换膜的制备及性能
Preparation and properties of proton exchange membrane reinforced by metal-organic framework/ionic liquid
查看参考文献26篇
文摘
|
为了提高磺化聚醚醚酮/离子液体(SPEEK/IL)膜的质子电导率,降低膜中IL的流失率,采用溶液浇铸法制备了双金属Cd@Co-MOF-74/磷酸基-4-苯基咪唑离子液体([IM2][H_2PO_4])/SPEEK三元复合膜。结果表明,由于离子液体中的咪唑环与MOF中的-OH或羧酸基团之间形成氢键,咪唑分子被锚定在MOF的孔壁上。在120 ℃、Cd@Co-MOF-74掺杂的质量分数为1.5%时,三元复合膜的质子电导率最高,达到26.93 mS·cm~(-1)。不同含量的双金属MOF/IL/SPEEK三元复合膜中IL流失率在20%~25%之间。在SPEEK/IL膜中掺杂双金属MOF在保证SPEEK膜有较高质子电导率的同时,降低了SPEEK/IL复合膜的溶胀率,进而增加了SPEEK/IL复合膜的使用寿命。 |
其他语种文摘
|
To improve the proton conductivity of the sulfonated polyether ether ketone/ionic liquid (SPEEK/IL) membrane and reduce the loss rate of IL in the membrane, Cd@Co-MOF-74/Phosphate-4- phenylimidazole ionic liquid ([IM2][H_2PO_4])/SPEEK ternary composite membranes were prepared by the solution casting method. Results show that due to the formation of hydrogen bonds between the imidazole ring in ionic liquids and the -OH or carboxylic acid groups in MOF, imidazole molecules are anchored on the pore walls of MOF. The proton conductivity of the ternary composite membrane at 120 ℃ is the highest, reaching 26.93 mS·cm~(-1), when the mass fraction of the Cd@Co-MOF-74 doping is 1.5%. The IL loss rate of bimetallic MOF/IL/SPEEK ternary composite membranes with different contents is generally between 20% and 25%. Doping bimetallic MOFs in SPEEK/IL membranes ensures high proton conductivity while reducing the swelling rate of SPEEK/IL composite membranes, thereby increasing their service life. |
来源
|
材料工程
,2024,52(8):150-158 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000580
|
关键词
|
磺化聚醚醚酮
;
离子液体
;
金属有机框架
;
质子交换膜
;
质子电导率
|
地址
|
青岛科技大学化工学院, 山东, 青岛, 266042
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
生物基水性聚酯功能材料设计与应用
;
山东省高等学校青创科技支持计划
|
文献收藏号
|
CSCD:7794337
|
参考文献 共
26
共2页
|
1.
An L. The dual role of hydrogen peroxide in fuel cells.
Science Bulletin,2015,60(1):55-64
|
CSCD被引
6
次
|
|
|
|
2.
Wang S. Prospects of fuel cell technologies.
National Science Review,2017,4(2):163-166
|
CSCD被引
42
次
|
|
|
|
3.
Shangguan Z. Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells.
Journal of Materials Chemistry A,2021,9(27):15111-15139
|
CSCD被引
7
次
|
|
|
|
4.
Zhu H. SPEEK scaling UP.
Joule,2022,6(4):718-720
|
CSCD被引
1
次
|
|
|
|
5.
Montero J F D. Biofilm behavior on sulfonated poly (ether-ether-ketone) (SPEEK).
Materials Science and Engineering: C,2017,70:456-460
|
CSCD被引
1
次
|
|
|
|
6.
董翠翠. 改性钛酸钡/SPEEK质子交换膜的制备及性能研究.
电源技术,2022,46(6):617-620
|
CSCD被引
1
次
|
|
|
|
7.
Li Z. Addition of modified hollow mesoporous organosilica in anhydrous SPEEK/IL composite mem brane enhances its proton conductivity.
Journal of Membrane Science,2021,620:118897
|
CSCD被引
1
次
|
|
|
|
8.
Habib N. A novel IL/MOF/polymer mixed matrix membrane having superior CO_2/N_2 selectivity.
Journal of Membrane Science,2022,658:120712
|
CSCD被引
4
次
|
|
|
|
9.
孙闫刚. 用于铅离子检测的Cu-MOF电化学传感器构建及性能研究.
化工新型材料,2023,51(4):313-317
|
CSCD被引
1
次
|
|
|
|
10.
Aguilera-Sigalat J. A metal-organic framework based on a tetraarylextended calix[4]pyrrole ligand: structure control through the covalent connectivity of the linker.
Crystal Growth & Design,2017,17(3):1328-1338
|
CSCD被引
1
次
|
|
|
|
11.
Sun H. Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties.
ACS Applied Materials & Interfaces,2017,9(40):35075-35085
|
CSCD被引
6
次
|
|
|
|
12.
Yang J. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells.
Journal of Materials Science & Technology,2023,152:75-85
|
CSCD被引
4
次
|
|
|
|
13.
Sun H. Rational design of S-UiO-66@GO hybrid nanosheets for proton exchange membranes with significantly enhanced transport performance.
ACS Applied Materials & Interfaces,2017,9(31):26077-26087
|
CSCD被引
6
次
|
|
|
|
14.
Mohamed A M. Optimized fabrication of bimetallic ZnCo metal-organic framework at NiColayered double hydroxides for multiple storage and capability synergy all-solid-state supercapacitors.
ACS Applied Materials & Interfaces,2023,15(13):16755-16767
|
CSCD被引
2
次
|
|
|
|
15.
Sharma J. Hydrophilic tailoring of s-PEEK polyelectrolyte with CeMnOx bimetal oxide to sustain oxidative dilemma and improve PEMFC performance.
International Journal of Hydrogen Energy,2023,48(29):10941-10954
|
CSCD被引
1
次
|
|
|
|
16.
Ji Y. Reconstruction of Co/Ni metalorganicframework based electrode materials with excellent conductivity and integral stability extended hydrothermal treatment toward improved performance of supercapacitors.
Journal of Electroanalytical Chemistry,2023,932:117265
|
CSCD被引
2
次
|
|
|
|
17.
Xu D. A heterostructure of a 2D bimetallic metal-organic framework assembled on an MXene for high-performance supercapacitors.
Dalton Transactions,2023,52(8):2455-2462
|
CSCD被引
5
次
|
|
|
|
18.
Ye J. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery.
Journal of Membrane Science,2019,572:110-118
|
CSCD被引
16
次
|
|
|
|
19.
Xiong Y. Co-MOF-74 derived Co_3O_4/graphene heterojunction nanoscrolls for ppb-level acetone detection.
Sensors and Actuators B,2019,300:127011
|
CSCD被引
4
次
|
|
|
|
20.
Fonseca J. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses.
Journal of Materials Chemistry A,2021,9(17):10562-10611
|
CSCD被引
23
次
|
|
|
|
|