帮助 关于我们

返回检索结果

金属有机框架/离子液体增强的质子交换膜的制备及性能
Preparation and properties of proton exchange membrane reinforced by metal-organic framework/ionic liquid

查看参考文献26篇

文摘 为了提高磺化聚醚醚酮/离子液体(SPEEK/IL)膜的质子电导率,降低膜中IL的流失率,采用溶液浇铸法制备了双金属Cd@Co-MOF-74/磷酸基-4-苯基咪唑离子液体([IM2][H_2PO_4])/SPEEK三元复合膜。结果表明,由于离子液体中的咪唑环与MOF中的-OH或羧酸基团之间形成氢键,咪唑分子被锚定在MOF的孔壁上。在120 ℃、Cd@Co-MOF-74掺杂的质量分数为1.5%时,三元复合膜的质子电导率最高,达到26.93 mS·cm~(-1)。不同含量的双金属MOF/IL/SPEEK三元复合膜中IL流失率在20%~25%之间。在SPEEK/IL膜中掺杂双金属MOF在保证SPEEK膜有较高质子电导率的同时,降低了SPEEK/IL复合膜的溶胀率,进而增加了SPEEK/IL复合膜的使用寿命。
其他语种文摘 To improve the proton conductivity of the sulfonated polyether ether ketone/ionic liquid (SPEEK/IL) membrane and reduce the loss rate of IL in the membrane, Cd@Co-MOF-74/Phosphate-4- phenylimidazole ionic liquid ([IM2][H_2PO_4])/SPEEK ternary composite membranes were prepared by the solution casting method. Results show that due to the formation of hydrogen bonds between the imidazole ring in ionic liquids and the -OH or carboxylic acid groups in MOF, imidazole molecules are anchored on the pore walls of MOF. The proton conductivity of the ternary composite membrane at 120 ℃ is the highest, reaching 26.93 mS·cm~(-1), when the mass fraction of the Cd@Co-MOF-74 doping is 1.5%. The IL loss rate of bimetallic MOF/IL/SPEEK ternary composite membranes with different contents is generally between 20% and 25%. Doping bimetallic MOFs in SPEEK/IL membranes ensures high proton conductivity while reducing the swelling rate of SPEEK/IL composite membranes, thereby increasing their service life.
来源 材料工程 ,2024,52(8):150-158 【核心库】
DOI 10.11868/j.issn.1001-4381.2023.000580
关键词 磺化聚醚醚酮 ; 离子液体 ; 金属有机框架 ; 质子交换膜 ; 质子电导率
地址

青岛科技大学化工学院, 山东, 青岛, 266042

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 化学工业
基金 生物基水性聚酯功能材料设计与应用 ;  山东省高等学校青创科技支持计划
文献收藏号 CSCD:7794337

参考文献 共 26 共2页

1.  An L. The dual role of hydrogen peroxide in fuel cells. Science Bulletin,2015,60(1):55-64 CSCD被引 6    
2.  Wang S. Prospects of fuel cell technologies. National Science Review,2017,4(2):163-166 CSCD被引 42    
3.  Shangguan Z. Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells. Journal of Materials Chemistry A,2021,9(27):15111-15139 CSCD被引 7    
4.  Zhu H. SPEEK scaling UP. Joule,2022,6(4):718-720 CSCD被引 1    
5.  Montero J F D. Biofilm behavior on sulfonated poly (ether-ether-ketone) (SPEEK). Materials Science and Engineering: C,2017,70:456-460 CSCD被引 1    
6.  董翠翠. 改性钛酸钡/SPEEK质子交换膜的制备及性能研究. 电源技术,2022,46(6):617-620 CSCD被引 1    
7.  Li Z. Addition of modified hollow mesoporous organosilica in anhydrous SPEEK/IL composite mem brane enhances its proton conductivity. Journal of Membrane Science,2021,620:118897 CSCD被引 1    
8.  Habib N. A novel IL/MOF/polymer mixed matrix membrane having superior CO_2/N_2 selectivity. Journal of Membrane Science,2022,658:120712 CSCD被引 4    
9.  孙闫刚. 用于铅离子检测的Cu-MOF电化学传感器构建及性能研究. 化工新型材料,2023,51(4):313-317 CSCD被引 1    
10.  Aguilera-Sigalat J. A metal-organic framework based on a tetraarylextended calix[4]pyrrole ligand: structure control through the covalent connectivity of the linker. Crystal Growth & Design,2017,17(3):1328-1338 CSCD被引 1    
11.  Sun H. Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties. ACS Applied Materials & Interfaces,2017,9(40):35075-35085 CSCD被引 6    
12.  Yang J. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells. Journal of Materials Science & Technology,2023,152:75-85 CSCD被引 4    
13.  Sun H. Rational design of S-UiO-66@GO hybrid nanosheets for proton exchange membranes with significantly enhanced transport performance. ACS Applied Materials & Interfaces,2017,9(31):26077-26087 CSCD被引 6    
14.  Mohamed A M. Optimized fabrication of bimetallic ZnCo metal-organic framework at NiColayered double hydroxides for multiple storage and capability synergy all-solid-state supercapacitors. ACS Applied Materials & Interfaces,2023,15(13):16755-16767 CSCD被引 2    
15.  Sharma J. Hydrophilic tailoring of s-PEEK polyelectrolyte with CeMnOx bimetal oxide to sustain oxidative dilemma and improve PEMFC performance. International Journal of Hydrogen Energy,2023,48(29):10941-10954 CSCD被引 1    
16.  Ji Y. Reconstruction of Co/Ni metalorganicframework based electrode materials with excellent conductivity and integral stability extended hydrothermal treatment toward improved performance of supercapacitors. Journal of Electroanalytical Chemistry,2023,932:117265 CSCD被引 2    
17.  Xu D. A heterostructure of a 2D bimetallic metal-organic framework assembled on an MXene for high-performance supercapacitors. Dalton Transactions,2023,52(8):2455-2462 CSCD被引 5    
18.  Ye J. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. Journal of Membrane Science,2019,572:110-118 CSCD被引 16    
19.  Xiong Y. Co-MOF-74 derived Co_3O_4/graphene heterojunction nanoscrolls for ppb-level acetone detection. Sensors and Actuators B,2019,300:127011 CSCD被引 4    
20.  Fonseca J. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A,2021,9(17):10562-10611 CSCD被引 23    
引证文献 1

1 魏馨雨 三元共聚聚酰亚胺质子交换膜的制备及性能 膜科学与技术,2025,45(2):40-47
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号