智能可穿戴柔性压力传感器的研究进展
Research progress of intelligent wearable flexible pressure sensor
查看参考文献86篇
文摘
|
柔性压力传感器可以附着在人体皮肤感知外界压力信号,且具有传感范围广、响应时间短、灵敏度和耐久性高等特点,因此被广泛应用于电子皮肤和人机交互等领域。柔性压力传感器通常由柔性基底、活性材料、导电电极组成。其中,一种或多种活性材料通过与柔性基底复合形成传感材料,其受外界刺激产生的变形会引起阻值等变化,进而实现传感功能。此外,通过引入微结构可增加传感材料的可压缩性以及对微小压力的敏感度,提升传感性能。本文围绕薄膜和织物两类基底,综述了在其中掺杂碳基、金属基与黑磷基等活性材料的柔性压力传感器的研究,重点论述了不同传感器的制备方法、机电性能与应用场景,总结了各类传感器的优缺点。在此基础上,对未来智能可穿戴柔性压力传感器如何实现宽范围压力检测、商业化以及制作流程无毒化与长时期生物相容性实验等方面的研究做出了展望。 |
其他语种文摘
|
Flexible pressure sensors can be attached to the human skin to sense external pressure signals, and have the characteristics of wide sensing range, short response time, high sensitivity, and durability. Therefore, they are widely used in the fields of electronic skin and human-computer interaction. Flexible pressure sensors are usually composed of flexible substrates, active materials and conductive electrodes. Among them, one or more of the active materials form a sensing material by compounding with a flexible substrate, and its deformation under external excitation will cause changes in parameters such as resistance, thereby achieving sensing function. In addition, by introducing microstructure, the compressibility and sensitivity to small pressure of the sensing material can be increased, and its sensing performance can be improved. In this paper, the research progress in flexible pressure sensors doped with carbon-based, metalbased, and black phosphorus-based active materials on film and fabric substrates was reviewed. The preparation methods, electromechanical properties and application scenarios of different sensors were discussed, and the advantages and disadvantages of various sensors were summarized. On this basis, the research on how to achieve wide-range pressure detection, commercialization, non-toxicity of the production process and long-term biocompatibility experiments of smart wearable flexible pressure sensors in the future is prospected. |
来源
|
材料工程
,2024,52(8):98-108 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000861
|
关键词
|
智能可穿戴
;
柔性压力传感器
;
活性材料
;
柔性基底
|
地址
|
1.
中国矿业大学(北京)应急管理与安全工程学院, 北京, 100083
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
3.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金项目
;
中科院基础前沿科学研究计划“从0到1”原始创新项目
;
中科院创新交叉团队项目
|
文献收藏号
|
CSCD:7794332
|
参考文献 共
86
共5页
|
1.
Zhong W. Full-textile human motion detection systems integrated by facile weaving with hierarchical core-shell piezoresistive yarns.
ACS Applied Materials & Interfaces,2021,13(44):52901-52911
|
CSCD被引
4
次
|
|
|
|
2.
Lin Y A. Graphene K-tapemeshes for densely distributed human motion monitoring.
Advanced Materials Technologies,2021,6(1):2000861
|
CSCD被引
1
次
|
|
|
|
3.
Cho D. Bitter flavored, soft composites for wearables designed to reduce risks of choking in infants.
Advanced Materials,2021,33(39):2103857
|
CSCD被引
2
次
|
|
|
|
4.
Fang Y S. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor.
Advanced Materials,2021,33(41):2104178
|
CSCD被引
17
次
|
|
|
|
5.
Pierre Claver U. Recent progress in flexible pressure sensors based electronic skin.
Advanced Engineering Materials,2021,23(5):2001187
|
CSCD被引
10
次
|
|
|
|
6.
Hammock M L. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress.
Advanced Materials,2013,25(42):5997-6038
|
CSCD被引
142
次
|
|
|
|
7.
Deng W L. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures.
Nano Energy,2019,55:516-525
|
CSCD被引
35
次
|
|
|
|
8.
Lee Y. Visual-inertial hand motion tracking with robustness against occlusion, interference, and contact.
Science Robotics,2021,6(58):1315
|
CSCD被引
1
次
|
|
|
|
9.
Pinskier J. From bioinspiration to computer generation: developments in autonomous soft robot design.
Advanced Intelligent Systems,2022,4(1):2100086
|
CSCD被引
1
次
|
|
|
|
10.
Liu F. CNTs based capacitive stretchable pressure sensor with stable performance.
Sensors and Actuators A: Physical,2022,343:113672
|
CSCD被引
2
次
|
|
|
|
11.
Zhao Y. Flexible and wearable EMG and PSD sensors enabled locomotion mode recognition for IoHT-based in-home rehabilitation.
IEEE Sensors Journal,2021,21(23):26311-26319
|
CSCD被引
1
次
|
|
|
|
12.
He J. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects.
Journal of Materiomics,2020,6(1):86-101
|
CSCD被引
20
次
|
|
|
|
13.
Kim S. Wide range-sensitive, bending-insensitive pressure detection and application to wearable healthcare device.
International Conference on Solid-State Sensors and Actuators (TRANSDUCERS),2019:374-377
|
CSCD被引
1
次
|
|
|
|
14.
Lee J H. A behavior-learned crossreactive sensor matrix for intelligent skin perception.
Advanced Materials,2020,32(22):2000969
|
CSCD被引
9
次
|
|
|
|
15.
金欣. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展.
材料工程,2018,46(11):13-24
|
CSCD被引
9
次
|
|
|
|
16.
Wu P. Cantilever-based differential pressure sensor with a bio-inspired bristled configuration.
Bioinspiration & Biomimetics,2021,16(5):055011
|
CSCD被引
1
次
|
|
|
|
17.
Li H. A high sensitive flexible pressure sensor designed by silver nanowires embedded in polyimide(AgNWPI).
Micromachines,2019,10(3):206
|
CSCD被引
6
次
|
|
|
|
18.
Kumar S K A. Flexible microhyperboloids facets giant sensitive ultra-low pressure sensor.
Sensors and Actuators A: Physical,2021,328:112767
|
CSCD被引
1
次
|
|
|
|
19.
Balderrama V S. MEMS piezoresistive pressure sensor based on flexible PET thin-film for applications in gaseousenvironments.
IEEE Sensors Journal,2021,22(3):1939-1947
|
CSCD被引
1
次
|
|
|
|
20.
Ding H. Influence of the pore size on the sensitivity of flexible and wearable pressure sensors based on porous Ecoflex dielectric layers.
Materials Research Express,2019,6(6):066304
|
CSCD被引
2
次
|
|
|
|
|