柔性锌离子电池在可穿戴传感器中的应用研究进展
Research progress in flexible Zn-ion batteries for wearable sensor
查看参考文献99篇
文摘
|
可穿戴传感器在运动、医学、康复等多个领域的应用极大地方便了对人体运动指标信号的捕捉和监测,有效避免了运动损伤,降低了就医频率甚至挽救了许多生命。随着可穿戴传感器的应用和普及,与之适配的柔性能源供应系统成为其发展的关键。近年来研究者们基于不同的能量释放方式,研究和设计了多种柔性能源供应系统,其中柔性锌离子电池以其高能量密度、高弹性模量、高循环稳定性和高安全性在众多供能体系中脱颖而出,成为可穿戴传感器最具潜力的柔性能源供应系统之一。本文综述了柔性锌离子电池近年来在可穿戴传感器方面的研究进展,主要介绍和总结了电池各组件(集流体、电极(正极、负极)、隔膜、电解质、封装)的材料类型、特点以及与可穿戴传感器集成的应用情况,最后讨论了柔性锌离子电池目前面临的问题和挑战。 |
其他语种文摘
|
The applications of wearable sensors in sports, medicine, rehabilitation, and other fields, have greatly facilitated the capture and monitoring of human movement index signals effectively avoiding sports injuries, reducing the frequency of medical treatment, and even saving many lives. With the application and popularization of wearable sensors, suitable flexible energy supply systems are the key to its development. In recent years, researchers have studied and designed a variety of flexible energy supply systems based on different energy release methods, among which flexible Zn-ion batteries stand out due to their high energy density, high elastic modulus, high cycle stability, and high safety. We reviewed the research progress in flexible Zn-ion batteries for wearable sensors, mainly introducing and summarizing the batteries components (such as current collector, electrode (cathode and anode), separator, electrolyte, and packaging) and the application of wearable sensors. Finally, the current problems and challenges of flexible Zn-ion batteries are discussed. |
来源
|
材料工程
,2024,52(8):29-41 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2024.000108
|
关键词
|
可穿戴传感器
;
柔性材料
;
供能系统
;
锌离子电池
|
地址
|
1.
首都体育学院体育人工智能研究院, 北京, 100191
2.
首都体育学院北京市体育医学工程学新兴交叉学科平台, 北京, 100191
3.
首都体育学院体医融合创新中心, 北京, 100191
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7794327
|
参考文献 共
99
共5页
|
1.
Sun W. A review of recent advances in vital signals monitoring of sports and health via flexible wearable sensors.
Sensors,2022,22(20):7784
|
CSCD被引
1
次
|
|
|
|
2.
Afsar M M. Body-worn sensors for recognizing physical sports activities in exergaming via deep learning model.
IEEE Access,2023,11:12460-12473
|
CSCD被引
1
次
|
|
|
|
3.
Kong L. A self-powered and selfsensing lower-limb system for smart healthcare.
Advanced Energy Materials,2023,13(31):2301254
|
CSCD被引
1
次
|
|
|
|
4.
Li R. Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoring.
Micromachines,2021,12(4):352
|
CSCD被引
3
次
|
|
|
|
5.
Tan P. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input.
Advanced Materials,2022,34(21):2200793
|
CSCD被引
13
次
|
|
|
|
6.
Wu T. Wearable perovskite-based shadow recognition sensor for ambient and nonobtrusive humancomputer interaction.
Advanced Intelligent Systems,2023,5(1):2200307
|
CSCD被引
1
次
|
|
|
|
7.
Wang M. High-performance photodetectors based on semiconducting graphene nanoribbons.
Nano Letters,2023,24(1):165-171
|
CSCD被引
1
次
|
|
|
|
8.
Ahmed R. Simulation study of ZnO nanorod geom etry for the development of high-performance tactile sensors and energy harvesting devices.
Physica Scripta,2024,99(2):025930
|
CSCD被引
1
次
|
|
|
|
9.
Liu J. Underwater biomimetic lateral line sensor based on triboelectric nanogenerator for dynamic pressure monitoring and trajectory perception.
Small,2023,20(9):2308491
|
CSCD被引
1
次
|
|
|
|
10.
Yin L. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display.
Nature Electronics,2022,5(10):694-705
|
CSCD被引
7
次
|
|
|
|
11.
Sheng H. A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors.
Science Advances,2023,9(46):8083
|
CSCD被引
1
次
|
|
|
|
12.
赵基钢. 锂离子电容器正极材料的研究进展.
材料工程,2023,51(9):28-36
|
CSCD被引
2
次
|
|
|
|
13.
Al-Amin M. Comparative review on the aqueous zinc-ion batteries (AZIBs) and flexible zinc-ion batteries (FZIBs).
Nanomaterials,2022,12(22):3997
|
CSCD被引
4
次
|
|
|
|
14.
Xiang F. Recent advances in flexible batteries: from materials to applications.
Nano Research,2023,16(4):4821-4854
|
CSCD被引
3
次
|
|
|
|
15.
Jiang L. A review on system and materials for aqueous flexible metal-air batteries.
Carbon Energy,2023,5(3):2096-9570
|
CSCD被引
3
次
|
|
|
|
16.
Kaveevivitchai W. High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries.
Journal of Materials Chemistry A,2016,4(48):18737-18741
|
CSCD被引
18
次
|
|
|
|
17.
Li C. Effect of surface treatment of stainless steel foils in high-performance aqueous zinc-ion battery.
Energy Technology,2022,10(6):2200150
|
CSCD被引
2
次
|
|
|
|
18.
Li H. Zinc deposition characteristics on different substrates for aqueous zinc ion battery.
Applied Surface Science,2023,607:155111
|
CSCD被引
2
次
|
|
|
|
19.
Ren Y. CNT@MnO_2 composite ink toward a flexible 3D printed micro-zinc-ion battery.
Carbon Energy,2022,4(3):446-457
|
CSCD被引
14
次
|
|
|
|
20.
Wang X. A flexible carbon nanotube@V_2O_5 film as a high-capacity and durable cathode for zinc ion batteries.
Journal of Energy Chemistry,2021,59:126-133
|
CSCD被引
12
次
|
|
|
|
|