铁阴极活化过硫酸盐高效去除水中四环素的动力学研究
Kinetics Study on Efficient Removal of Tetracycline in Water by Iron Cathodic Activated Persulfate
查看参考文献42篇
文摘
|
抗生素广泛存在于地表水和地下水中,对水生环境和人类健康构成了严重威胁,已成为国际公约管控的重要新污染物。高级氧化技术是处理难降解新污染物的有效技术。基于电化学-过硫酸盐的高级氧化技术在抗生素等新污染物治理中受到了广泛关注,但传统铁阳极活化方法仍存在污泥产量大等缺陷。因此,本研究开发了基于铁阴极电化学活化过硫酸盐(PDS)的高级氧化技术,并研究了其对抗生素(四环素)的降解动力学和机理。研究建立了四环素降解的多过程耦合动力学理论模型,模型模拟结果与实验数据基本吻合,结果表明铁阴极体系能高效降解四环素(0.42±0.007 38 M~(-1) ·s~(-1))并降低电极损耗。通过对主控因子的解析,发现PDS浓度、电流大小、初始pH值、初始四环素浓度均能不同程度影响四环素的降解动力学。通过对降解机制研究,发现铁阴极体系中的主要活性氧物种为·SO_4~-和·OH,它们对四环素降解的贡献分别为28.02%和71.98%。研究结果为应用铁阴极-过硫酸盐技术高效治理抗生素等新污染物提供了重要支撑。 |
其他语种文摘
|
Antibiotics are widely present in surface water and groundwater,posing a serious risk to aquatic environments and human health,and have become important new pollutants under international conventions.Advanced oxidation technologies are effective for treating refractory new pollutants.The electrochemical activation of persulfate-based advanced oxidation technology has received widespread attention in the treatment of antibiotics and other new pollutants,but traditional iron anode activation methods still suffer from high sludge production and other deficiencies.Therefore,this study developed an advanced oxidation technology based on the electrochemical activation of peroxydisulfate (PDS) using an iron cathode,and investigated its degradation kinetics and mechanisms on tetracycline.The study established a multi-process coupled kinetic theoretical model for tetracycline degradation,and the simulation results were in good agreement with the experimental observations.The results indicated that the iron cathode system could effectively degrade tetracycline (0.42±0.007 38 M~(-1)·s~(-1)) and reduce electrode losses.Through the analysis of key factors,it was found that sulfate concentration,current magnitude,initial pH value,and initial tetracycline concentration could all affect the degradation kinetics of tetracycline to varying degrees.Inspection of degradation mechanisms revealed that the main active oxygen species in the iron cathode system were ·SO_4~- and ·OH,contributing 28.02% and 71.98%,respectively,to the degradation of tetracycline.These findings provide important support for the efficient treatment of antibiotic and other new pollutants using the iron cathode-persulfate technology. |
来源
|
地球与环境
,2024,52(4):500-508 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2024.52.002
|
关键词
|
抗生素
;
铁阴极
;
过硫酸盐
;
动力学模型
;
新污染物
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
舍布鲁克大学土木与建筑工程系, 舍布鲁克, J1K 2R1
4.
江汉大学环境与健康学院, 武汉, 430056
5.
武汉科技大学城市建设学院, 武汉, 430081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
环境污染及其防治 |
基金
|
贵州省科技支撑项目
;
贵州省项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:7783563
|
参考文献 共
42
共3页
|
1.
Szekeres E. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas.
Environmental Pollution,2018,236:734-744
|
CSCD被引
22
次
|
|
|
|
2.
Huang Y H. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China.
The Science of the Total Environment,2019,670:170-180
|
CSCD被引
16
次
|
|
|
|
3.
Pazda M. Antibiotic resistance genes identified in wastewater treatment plant systems: a review.
The Science of the Total Environment,2019,697:134023
|
CSCD被引
22
次
|
|
|
|
4.
Mndez E. Emerging pollutant treatments in wastewater: cases of antibiotics and hormones.
Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering,2017,52(3):235-253
|
CSCD被引
1
次
|
|
|
|
5.
Harms A. Mechanisms of bacterial persistence during stress and antibiotic exposure.
Science,2016,354(6318):f4268
|
CSCD被引
16
次
|
|
|
|
6.
Vikesland P J. Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance.
Environmental Science and Technology,2017,51(22):13061-13069
|
CSCD被引
18
次
|
|
|
|
7.
Xie X J. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L. ).
Environmental Toxicology and Chemistry,2010,29(4):922-928
|
CSCD被引
11
次
|
|
|
|
8.
Saitoh T. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions.
Separation and Purification Technology,2017,187:76-83
|
CSCD被引
7
次
|
|
|
|
9.
Li S Z. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics.
Separation and Purification Technology,2004,34(1/2/3):109-114
|
CSCD被引
24
次
|
|
|
|
10.
Zhang P Z. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures.
Bioresource Technology,2019,285:121348
|
CSCD被引
27
次
|
|
|
|
11.
Chen W R. Adsorption and transformation of tetracycline antibiotics with aluminum oxide.
Chemosphere,2010,79(8):779-785
|
CSCD被引
13
次
|
|
|
|
12.
Iakovides I C. Continuous ozonation of urban wastewater: removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity.
Water Research,2019,159:333-347
|
CSCD被引
19
次
|
|
|
|
13.
Wang H X. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@ CeO_2 heterostructured microspheres: structural characterization and reaction mechanism.
Journal of Hazardous Materials,2020,385:121552
|
CSCD被引
14
次
|
|
|
|
14.
Wang J B. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4 O7 anode.
Water Research,2018,137:324-334
|
CSCD被引
37
次
|
|
|
|
15.
李道荣. Fenton试剂氧化降解水中的盐酸四环素.
环境工程学报,2017,11(4):2227-2232
|
CSCD被引
9
次
|
|
|
|
16.
Zhao Y L. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process.
Journal of Hazardous Materials,2021,409:124893
|
CSCD被引
13
次
|
|
|
|
17.
Zhou Y. Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: kinetics, products, and modeling.
Water Research,2018,138:56-66
|
CSCD被引
8
次
|
|
|
|
18.
Stroo H F. Chlorinated ethene source remediation: lessons learned.
Environmental Science & Technology,2012,46(12):6438-6447
|
CSCD被引
16
次
|
|
|
|
19.
Tsitonaki A. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review.
Critical Reviews in Environmental Science and Technology,2010,40(1):55-91
|
CSCD被引
132
次
|
|
|
|
20.
Yang Q. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water.
Chemical Engineering Journal,2019,378:122149
|
CSCD被引
33
次
|
|
|
|
|