MinerGeochem V1.0:一个全新的矿物地球化学数据信息系统
MinerGeochem V1.0: A new mineral geochemistry data information system
查看参考文献14篇
文摘
|
矿物是人类认识地球及地外天体的一把钥匙。随着现代原位分析技术的快速发展,矿物地球化学数据呈现指数增长,积累了大量数据,但这些数据结构复杂,且无统一的标准和格式,阻碍了矿物大数据的再利用和相关的对比研究。鉴于矿物地球化学数据对解决各类地球科学问题的优势,以及它们复杂的数据结构和体量呈指数增长的趋势,本研究基于计算机信息技术、Web应用、关系数据库、GIS等开发了一个矿物地球化学数据信息系统(MinerGeochem)。该系统由信息硬件基础设施、操作系统/数据库系统、服务组件和应用模块组成。功能模块有用户管理模块、网站内容版块、数据管理版块、记录管理版块、系统配置版块、GIS数据可视化和数据导入导出等模块组成。数据维度有矿床数据、矿物数据、实验数据和文献数据四类数据结构,每类数据包含多个属性,数据通过其属性相关联,实现了任一数据属性的搜索和获取。数据标准化及数据上传采用Excel模版批量处理,简单快捷。MinerGeochem界面简单,使用方便,有望成为地学数据库的重要组成部分,为地学工作者提供数据支持。 |
其他语种文摘
|
The mineral is a key to understand the earth and extraterrestrial objects for human beings. With the rapid development of modern in situ analysis techniques, a large amount of mineral geochemical data has been accumulated in an exponential growth mode. However, the complex structures and various types and formats of these data hindered the reuse of mineral big data and related comparative researches. In view of the advantages of mineral geochemical data in solving various questions of geosciences, as well as their complex data structure and exponential growth trend, a mineral geochemical data information system (MinerGeochem, http://www.minergeochem.com/) was developed based on the computer information technology, web application, relational database, and GIS. The system consists of information hardware infrastructure, operating system/database system, service components, and application modules. The functional modules include the user management module, website content module, data management module, record management module, system configuration module, GIS data visualization, and data import and export module. The data dimension consists of four types of data structures including the mineral deposit data, mineral data, experiment data, and literature data. Each type of data contains multiple attributes, and these data are related through their attributes for enabling the search and acquisition of any data attribute. Data standardization and data upload are simply and fast processed in batches using Excel templates. The MinerGeochem which has a simple interface is easily used. The system will be important part of the geoscience database and will provide data support for geoscience researchers. |
来源
|
矿物岩石地球化学通报
,2024,43(4):767-774 【核心库】
|
DOI
|
10.3724/j.issn.1007-2802.20240057
|
关键词
|
矿物
;
地球化学
;
数据库
;
信息系统
;
web技术
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
中国科学院“百人计划”项目
;
矿床地球化学国家重点实验室领域前沿重点项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:7783152
|
参考文献 共
14
共1页
|
1.
Gregory D D. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets.
Economic Geology,2019,114(4):771-786
|
CSCD被引
14
次
|
|
|
|
2.
郭华东. 科学大数据与数字地球.
科学通报,2014,59(12):1047-1054
|
CSCD被引
72
次
|
|
|
|
3.
Hong S. Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition.
Journal of Geochemical Exploration,2021,230:106859
|
CSCD被引
5
次
|
|
|
|
4.
Huang X W. Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes.
Mineralium Deposita,2019,54(4):525-552
|
CSCD被引
10
次
|
|
|
|
5.
Huang X W. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtypes and magmatic affinity.
Economic Geology,2019,114(5):917-952
|
CSCD被引
11
次
|
|
|
|
6.
Meng Y M. Deposit type discrimination based on trace elements in sphalerite.
Ore Geology Reviews,2024,165:105887
|
CSCD被引
2
次
|
|
|
|
7.
Prabhu A. What is mineral informatics?.
American Mineralogist,2023,108(7):1242-1257
|
CSCD被引
2
次
|
|
|
|
8.
Tan H M R. Multivariate statistical analysis of trace elements in apatite: Discrimination of apatite with different origins.
Ore Geology Reviews,2023,153:105269
|
CSCD被引
4
次
|
|
|
|
9.
Tan M. Trace element composition of molybdenite: Deposit type discrimination and limitations.
Minerals,2023,13(1):114
|
CSCD被引
1
次
|
|
|
|
10.
Whitney D L. Abbreviations for names of rock-forming minerals.
American Mineralogist,2010,95(1):185-187
|
CSCD被引
278
次
|
|
|
|
11.
Xie H. Discrimination of mineralization types of skarn deposits by magnetite chemistry.
Minerals,2022,12(5):608
|
CSCD被引
2
次
|
|
|
|
12.
奚小环. 大数据科学从信息化、模式化到智能化:现代地球化学应用研究的新范式.
地学前缘,2021,28(1):308-317
|
CSCD被引
4
次
|
|
|
|
13.
翟明国. 大数据时代:地质学的挑战与机遇.
中国科学院院刊,2018,33(8):825-831
|
CSCD被引
37
次
|
|
|
|
14.
张旗. 大数据正在引发地球科学领域一场深刻的革命—《地质科学》2017年大数据专题代序.
地质科学,2017,52(3):637-648
|
CSCD被引
47
次
|
|
|
|
|