孔隙特性对铝基非晶合金涂层腐蚀行为的影响
Effect of pore characteristics on corrosion behavior of Al-based amorphous alloy coatings
查看参考文献31篇
文摘
|
采用超音速火焰喷涂(HVAF)技术制备1.36%高孔隙率(high porosity,HP)和0.86%低孔隙率(low porosity,LP)两种铝基非晶合金涂层,研究孔隙率对铝基非晶合金涂层腐蚀行为的影响。通过扫描电子显微镜(SEM),X射线衍射仪(XRD)并结合3D高分辨X射线衍射形貌(3D XRT)分析涂层孔隙率以及微观组织结构,利用电化学测试系统和接触角测量仪研究涂层的腐蚀行为,采用X射线光电子谱(XPS)分析两种涂层钝化膜成分。结果表明:LP涂层的自腐蚀电流密度(I_(corr))为3.0×10~(-6) A/cm~2,点蚀电位(E_(pit))为-0.40 V,而HP涂层的I_(corr)为6.0×10~(-6) A/cm~2,E_(pit)为-0.47 V,LP涂层具有更好的耐局部点蚀能力;LP涂层的电荷转移电阻(R_(ct))约为HP涂层的2倍;LP涂层具有更大的接触角,疏水性更好; LP涂层形成的钝化膜中RE_2O_3的含量大于HP涂层,进一步说明LP涂层具有更优异的耐蚀性。 |
其他语种文摘
|
High-velocity air-fuel spray(HVAF) technology was used to prepare two kinds of Al-based amorphous alloy coatings with high porosity(HP) of 1.36% and low porosity(LP) of 0.86%. The effects of porosities on the corrosion behavior of Al-based amorphous alloy coatings were studied. The porosities and microstructures of the coatings were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) combined with three-dimensional X-ray tomography(3D XRT). The corrosion properties of the coatings were studied by electrochemical testing system and contact angle measuring instrument. The passive film components of the two coatings were analyzed by X-ray photoelectron spectroscopy(XPS). The results show that the self-corrosion current density(I_(corr)) and pitting potential(E_(pit)) of the LP coatings are 3.0×10~(-6) A/cm~2 and -0.40 V, respectively. The I_(corr) and E_(pit) for HP coatings are 6.0×10~(-6) A/cm~2 and -0.47 V, respectively, signifying that the LP coating has better resistance to the localized corrosion;the charge transfer resistance(R_(ct)) of LP coatings is about twice than that of HP coating;the LP coating has a larger contact angle, which proves that LP coating has better hydrophobicity and stronger corrosion resistance;the contents of RE_2O_3 in the passive film formed on the LP coating are larger, which further indicates that LP coating has better corrosion resistance. |
来源
|
材料工程
,2024,52(7):173-181 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000929
|
关键词
|
非晶涂层
;
阻抗谱
;
腐蚀
;
润湿
;
疏水性
|
地址
|
1.
中国特种飞行器研究所, 结构腐蚀防护与控制航空科技重点实验室, 湖北, 荆门, 448035
2.
中国科学院金属研究所, 沈阳材料科学国家研究中心, 沈阳, 110016
3.
陆军装甲兵学院, 装备再制造技术国防科技重点实验室, 北京, 100072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7782223
|
参考文献 共
31
共2页
|
1.
Parvizi R. Probing corrosion initiation at interfacial nanostructures of AA2024-T3.
Corrosion Science,2017,116:98-109
|
CSCD被引
2
次
|
|
|
|
2.
Alexopoulos N D. Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminum alloy (Al-Cu-Mg) 2024.
Corrosion Science,2017,121:32-42
|
CSCD被引
5
次
|
|
|
|
3.
Dursun T. Recent developments in advanced aircraft aluminum alloys.
Materials & Design,2014,56:862-871
|
CSCD被引
369
次
|
|
|
|
4.
Boag A. Corrosion of AA2024-T3. partⅠ: localized corrosion of isolated IM particles.
Corrosion Science,2011,53:17-26
|
CSCD被引
29
次
|
|
|
|
5.
Sukiman N L. Influence of microalloying additions on Al-Mg alloy. part 2: phase analysis and sensitization behaviors.
Corrosion Engineering Science and Technology,2014,49:263-268
|
CSCD被引
3
次
|
|
|
|
6.
Kendig M. Corrosion inhibition of aluminum and aluminum alloys by soluble chromates,chromate coatings, and chromate-free coatings.
Corrosion,2003,59:379-400
|
CSCD被引
22
次
|
|
|
|
7.
Treacy G M. Surface analytical study of the corrosion behaviour of chromate passivated Al 2014 A T-6 during salt fog exposure.
Applied Surface Science,2000,157:7-13
|
CSCD被引
2
次
|
|
|
|
8.
Presuel-Moreno F. Corrosion-resistant metallic coatings.
Materials Today,2008,11:14-23
|
CSCD被引
7
次
|
|
|
|
9.
Presuel-Moreno F. Computational modeling of active corrosion inhibitor release from an Al-Co-Ce metallic coating protection of exposed AA2024-T3.
Journal of the Electrochemical Society,2006,153(11):486-498
|
CSCD被引
1
次
|
|
|
|
10.
Jakab M A. Effect of molybdate, cerium, and cobalt ions on the oxygen reduction reaction on AA2024-T3 and selected intermetallics.
Journal of the Electrochemical Society,2006,153(7):244
|
CSCD被引
1
次
|
|
|
|
11.
Presuel-Moreno F. Electrochemical sacrificial cathodic prevention provided by an Al-Co-Ce metal coating coupled to AA2024-T3.
Journal of the Electrochemical Society,2005,152:302-310
|
CSCD被引
1
次
|
|
|
|
12.
梁秀兵. 铝基非晶材料研究与再制造应用前景.
材料导报,2021,35(1):1003-1010
|
CSCD被引
4
次
|
|
|
|
13.
张志彬. 热喷涂工艺制备铝基非晶态合金材料研究进展.
材料工程,2012(2):86-90
|
CSCD被引
3
次
|
|
|
|
14.
Zhang L M. Influence of sealing treatment on the corrosion behavior of HVAF sprayed Al-based amorphous/nanocrystalline coating.
Surface & Coatings Technology,2018,353:263-273
|
CSCD被引
6
次
|
|
|
|
15.
Gao M H. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying.
Journal of Alloys and Compounds,2018,735:1363-1373
|
CSCD被引
11
次
|
|
|
|
16.
Zhang S D. Effect of porosity defects on the long-term corrosion behavior of Fe-based amorphous alloy coated mild steel.
Corrosion Science,2016,110:57-70
|
CSCD被引
24
次
|
|
|
|
17.
Wu J. Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings.
Surface & Coatings Technology,2018,335:205-218
|
CSCD被引
10
次
|
|
|
|
18.
Zhang S D. Characterization of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behavior.
Corrosion Science,2015,93:211-221
|
CSCD被引
32
次
|
|
|
|
19.
Yang B J. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength.
Scripta Materialia,2009,61:423-426
|
CSCD被引
27
次
|
|
|
|
20.
Wang J Q. Crystallization behavior of Al-based amorphous alloy and nanocomposites by rapid quenching.
Philosophical Magazine Letters,2000,80(5):349-357
|
CSCD被引
2
次
|
|
|
|
|