高强铝合金电弧增材制造的研究进展
Research progress in arc additive manufacturing of high-strength aluminum alloys
查看参考文献102篇
文摘
|
高强铝合金因具有高强度、低密度、优异的延展性和抗腐蚀性,成为了航空航天和汽车应用零件最常用的金属材料之一。电弧增材制造技术具有快速原位成形制造复杂结构零部件的能力,非常适用于中型或大型高强铝合金铝部件的制造。本文综合分析了高强铝合金电弧增材制造工艺和设备研发现状、高强铝合金电弧增材的固有属性和缺陷以及主要的性能优化手段,讨论了组织和性能的固有特征和复合增材制造技术对组织和性能的影响。针对电弧增材制造高强铝合金不可忽略的本质冶金缺陷、特征性能需求和多种优化工艺的优劣等问题,提出了电弧增材制造高强铝合金综合评价体系、成分设计和丝材开发、专用热处理制度和复合增材制造技术的协同性等发展方向,以期为电弧增材制造高强铝合金的性能提升和应用推广提供重要参考。 |
其他语种文摘
|
High-strength aluminum alloy have become one of the most commonly used metal materials for aerospace and automotive application parts due to its high strength, low density, excellent ductility and corrosion resistance. Wire arc additive manufacturing(WAAM) has the ability to rapidly in-situ form and manufacture complex structural parts, and is very suitable for the manufacturing of medium or large highstrength aluminium alloy parts. The current status of high-strength aluminum alloy WAAM processes and equipment, the inherent properties and defects of high-strength aluminum alloy WAAM, and the main performance optimization methods were comprehensively analyzed in this paper. The inherent characteristics of the microstructure and properties as well as the impact of hybrid additive manufacturing technologies on the microstructure and properties were discussed. Opinions are put forward on issues such as metallurgical defects, characteristic performance requirements, the advantages and disadvantages of various optimization processes in WAAM. Development directions such as a comprehensive evaluation system, composition design and wire development, special heat treatment systems and synergy of composite additive manufacturing technology are proposed. Such proposals are expected to provide references for the performance improvement and application promotion of high-strength aluminum alloys manufactured via WAAM. |
来源
|
材料工程
,2024,52(7):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023-000708
|
关键词
|
电弧增材制造
;
高强铝合金
;
冶金缺陷
;
优化工艺
;
复合增材制造
|
地址
|
1.
北京工业大学, 汽车结构部件先进制造技术教育部工程研究中心, 北京, 100124
2.
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7782209
|
参考文献 共
102
共6页
|
1.
Ahmet E. A general view of industry 4.0 revolution from cybersecurity perspective.
International Journal of Intelligent Systems and Applications in Engineering,2020,8(1):11-20
|
CSCD被引
1
次
|
|
|
|
2.
Williams S W. Wire+ arc additive manufacturing.
Materials Science and Technology,2016,32(7):641-647
|
CSCD被引
86
次
|
|
|
|
3.
Wu B. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement.
Journal of Manufacturing Processes,2018,35:127-139
|
CSCD被引
69
次
|
|
|
|
4.
韩启飞. 电弧熔丝增材制造铝合金研究进展.
材料工程,2022,50(4):62-73
|
CSCD被引
17
次
|
|
|
|
5.
吕晓丹. 铝合金在海洋环境中的腐蚀行为研究进展.
中国材料进展,2022,41(6):477-486
|
CSCD被引
4
次
|
|
|
|
6.
Lu B. Development trends in additive manufacturing and 3D printing.
Engineering,2015,1(1):85-89
|
CSCD被引
34
次
|
|
|
|
7.
郑涛. 航空装备电弧熔丝增材制造技术发展及路线规划图.
航空材料学报,2023,43(1):18-27
|
CSCD被引
2
次
|
|
|
|
8.
Omiyale B. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review.
Materials Science and Technology,2022,38(7):391-408
|
CSCD被引
4
次
|
|
|
|
9.
Wang Z L. A review of aluminum alloy fabricated by different processes of wire arc additive manufacturing.
Materials Science,2021,27(1):18-26
|
CSCD被引
2
次
|
|
|
|
10.
Ralph B.
Method of making decorative articles: US Patent 1533300,1925
|
CSCD被引
1
次
|
|
|
|
11.
Panchenko O. Macrostructure and mechanical properties of Al-Si, Al-Mg-Si, and Al-Mg-Mn aluminum alloys produced by electric arc additive growth.
Metal Science and Heat Treatment,2019,60:749-754
|
CSCD被引
1
次
|
|
|
|
12.
Roy S. Mitigating scatter in mechanical properties in AISI 410 fabricated via arc-based additive manufacturing process.
Materials,2020,13(21):4855
|
CSCD被引
1
次
|
|
|
|
13.
Ding J. Thermomechanical analysis of wire and arc additive Layer manufacturing process on large multi-layer parts.
Computational Materials Science,2011,50(12):3315-3322
|
CSCD被引
44
次
|
|
|
|
14.
Dickens P. Rapid prototyping using 3-D welding.
Proceedings of the 1992 International Solid Freeform Fabrication Symposium,1992
|
CSCD被引
1
次
|
|
|
|
15.
黄丹. 5A06铝合金TIG丝材-电弧增材制造工艺.
材料工程,2017,45(3):66-72
|
CSCD被引
23
次
|
|
|
|
16.
Spencer J. Rapid prototyping of metal parts by three-dimensional welding.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,1998,212(3):175-182
|
CSCD被引
40
次
|
|
|
|
17.
Ding D. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM).
Robotics and Computer-Integrated Manufacturing,2015,31:101-110
|
CSCD被引
33
次
|
|
|
|
18.
Ge J. A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part.
Materials & Design,2018,160:218-228
|
CSCD被引
5
次
|
|
|
|
19.
Bekker A C. Life cycle assessment of wire+ arc additive manufacturing compared to green sand casting and CNC milling in stainless steel.
Journal of Cleaner Production,2018,177:438-447
|
CSCD被引
1
次
|
|
|
|
20.
Pang J. Arc characteristics and metal transfer behavior of CMT+ P welding process.
Journal of Materials Processing Technology,2016,238:212-217
|
CSCD被引
23
次
|
|
|
|
|