空间引力波探测科学数据处理的挑战与人工智能技术的应用
Challenges in space-based gravitational wave data analysis and applications of artificial intelligence
查看参考文献231篇
文摘
|
随着空间引力波探测项目,如LISA、太极、天琴等的不断推进,我们即将获得一个观察宇宙的全新视角.然而,这些项目的科学数据处理面临着前所未有的挑战,包括大量波源混叠、非稳态噪声、数据异常等.本文旨在为研究人员提供一个相对全面的视角,以贝叶斯统计推断框架为线索,综述了这些挑战及其可能的解决方案,讨论了从波源模板构建、探测器响应模拟,到噪声和数据异常处理的过程,并着重探讨了全局拟合与参数反演的技术策略,尤其是似然函数的构造与计算方法,以及如何利用多种随机采样技术提升分析效率和准确度.特别地,文章重点介绍了人工智能技术在引力波信号建模、噪声与数据异常处理、信号识别与参数估计等方面的应用,展示了人工智能如何为解决空间引力波探测数据分析中的复杂问题提供新的路径和工具. |
其他语种文摘
|
As space-based gravitational wave detection projects such as LISA, Taiji, and Tianqin continue to advance, we are on the cusp of gaining a new viewpoint on observing the universe. However, the scientific data processing for these projects faces unprecedented challenges, including the superposition of numerous gravitational wave sources, non-stationary noises, and data anomalies. This review aims to make a brief summary of these challenges and their possible solutions, using the Bayesian statistical inference framework as a thread, and provide researchers with a relatively comprehensive perspective. Topics such as the construction of waveform templates, the modeling of detector responses, and the processing of noise and data anomaly are discussed, with a focus on the strategies for parameter estimation and global fitting, especially the evaluation of likelihood, and the utilization of various stochastic sampling techniques to improve the efficiency and accuracy of analysis. Notably, this review highlights the applications of artificial intelligence technologies in waveform modeling, noise and data anomaly processing, signal recognition, and parameter estimation, showcasing how artificial intelligence can pave new paths for solving complex problems in the data analysis of space-based gravitational wave detection. |
来源
|
中国科学. 物理学
, 力学, 天文学,2024,54(7):270403 【核心库】
|
DOI
|
10.1360/SSPMA-2024-0087
|
关键词
|
引力波探测
;
数据处理
;
参数估计
;
人工智能
|
地址
|
1.
中国科学院大学国际理论物理中心(亚太地区), 北京, 100190
2.
中国科学院大学引力波宇宙太极实验室(北京/杭州), 北京, 100049
3.
中国科学院力学研究所引力波实验中心, 国家微重力实验室, 北京, 100190
4.
国科大杭州高等研究院, 杭州, 310024
5.
兰州大学兰州理论物理中心, 兰州, 730000
6.
中国科学院理论物理研究所, 中国科学院理论物理前沿重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1674-7275 |
学科
|
天文学 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
国家天文科学数据中心
;
中央高校基本科研业务费专项资金资助项目
|
文献收藏号
|
CSCD:7775293
|
参考文献 共
231
共12页
|
1.
Aasi J. Advanced LIGO.
Class Quantum Grav,2015,32:074001
|
CSCD被引
45
次
|
|
|
|
2.
Acernese F. Advanced Virgo: A second-generation interferometric gravitational wave detector.
Class Quantum Grav,2015,32:024001
|
CSCD被引
37
次
|
|
|
|
3.
Akutsu T. Overview of KAGRA: Detector design and construction history.
Prog Theor Exp Phys,2021,2021:05A101
|
CSCD被引
2
次
|
|
|
|
4.
Abbott R. GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run.
Phys Rev X,2023,13:041039
|
CSCD被引
27
次
|
|
|
|
5.
Nitz A H. 4-OGC: Catalog of gravitational waves from compact binary mergers.
Astrophys J,2023,946:59
|
CSCD被引
2
次
|
|
|
|
6.
Venumadhav T. New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo.
Phys Rev D,2020,101:083030
|
CSCD被引
2
次
|
|
|
|
7.
Zackay B. Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run.
Phys Rev D,2019,100:023007
|
CSCD被引
1
次
|
|
|
|
8.
Zackay B. Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers.
Phys Rev D,2021,104:063030
|
CSCD被引
1
次
|
|
|
|
9.
Mehta A K. New binary black hole mergers in the ligo-virgo o3b data.
arXiv: 2311.06061
|
CSCD被引
1
次
|
|
|
|
10.
Danzmann K. LISA: Laser interferometer space antenna for gravitational wave measurements.
Class Quantum Grav,1996,13:A247-A250
|
CSCD被引
22
次
|
|
|
|
11.
Colpi M. LISA definition study report.
arXiv: 2402.07571
|
CSCD被引
3
次
|
|
|
|
12.
Amaro-Seoane P. Laser interferometer space antenna.
arXiv: 1702.00786
|
CSCD被引
34
次
|
|
|
|
13.
Baker J. The laser interferometer space antenna: Unveiling the millihertz gravitational wave sky.
arXiv: 1907.06482
|
CSCD被引
3
次
|
|
|
|
14.
Gong X. A scientific case study of an advanced LISA mission.
Class Quantum Grav,2011,28:094012
|
CSCD被引
18
次
|
|
|
|
15.
Luo Z. The Taiji program: A concise overview.
Prog Theor Exp Phys,2020,2021:05A108
|
CSCD被引
4
次
|
|
|
|
16.
Hu W R. The Taiji Program in Space for gravitational wave physics and the nature of gravity.
Natl Sci Rev,2017,4:685-686
|
CSCD被引
116
次
|
|
|
|
17.
Wu Y L. Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1.
Int J Mod Phys A,2021,36:2102002
|
CSCD被引
2
次
|
|
|
|
18.
Wu Y L. China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna.
Commun Phys,2021,4:34
|
CSCD被引
11
次
|
|
|
|
19.
Mei J. The TianQin project: Current progress on science and technology.
Prog Theor Exp Phys,2020,2021:05A107
|
CSCD被引
2
次
|
|
|
|
20.
Luo J. TianQin: A space-borne gravitational wave detector.
Class Quantum Grav,2016,33:035010
|
CSCD被引
207
次
|
|
|
|
|