赣南淘锡坑钨矿床硫化物铅同位素组成及其地质意义
Lead isotopic compositions of sulfides in the Taoxikeng tungsten deposit, southern Jiangxi and their geological significance
查看参考文献62篇
文摘
|
为研究赣南崇义县淘锡坑钨矿床的成矿物质来源,对矿区隐伏花岗岩进行了主量元素成分分析,并挑选与黑钨矿紧密共生的32件黄铜矿、黄铁矿、毒砂样品进行铅同位素测试分析。结果显示,淘锡坑深部隐伏花岗岩体具有A型花岗岩特征;5件样品的铅同位素组成数值相对较小但变化范围较大,具有壳幔混合特点;其余27件样品的铅同位素组成相对稳定,显示上地壳铅特征。研究表明,隐伏花岗岩主要为上地壳物质重熔成因,但其上地壳重熔源区中包含少量壳幔混合成因的岩浆岩;矿床中钨等成矿元素,主要来自这种含少量壳幔混合成因岩浆岩的上地壳物质经重熔而形成的花岗岩浆。 |
其他语种文摘
|
In order to study the source of ore-forming materials of the Taoxikeng tungsten deposit in Chongyi County of the southern Jiangxi, in this paper, we have analyzed major element compositions of the concealed granite in the deposit, and have selected 32 samples of sulfides including pyrite, chalcopyrite and arsenopyrite which are closely associated with wolframite in the deposit for Pb isotope analysis. The results show that the concealed granite in the Taoxikeng deposit has the characteristics of A-type granite. The Pb isotopic compositions of five sulfide samples have relatively small values but a wide range of variation, showing the characteristics of crust-mantle mixed materials. The Pb isotopic compositions of other 27 sulfide samples are relatively stable, showing the characteristics of upper crustal lead. The study shows that the concealed granite was mainly formed by the remelting of the upper crustal materials which contain a small amount of the crust-mantle mixing sourced magmatic rock. The ore-forming elements such as tungsten in the deposit were mainly sourced from the granitic magma formed by the remelting of the upper crust materials containing a small amount of the crust-mantle mixing sourced magmatic rock. |
来源
|
矿物岩石地球化学通报
,2024,43(3):654-665 【核心库】
|
DOI
|
10.3724/j.issn.1007-2802.20240035
|
关键词
|
淘锡坑钨矿床
;
花岗岩
;
铅同位素
;
成矿物质来源
|
地址
|
1.
安顺学院, 贵州, 安顺, 561001
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
3.
成都理工大学, 成都, 610059
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
矿床地球化学国家重点实验室开放基金资助项目
|
文献收藏号
|
CSCD:7762262
|
参考文献 共
62
共4页
|
1.
Ballentine C J. Tracing fluid origin, transport and interaction in the crust.
Reviews in Mineralogy and Geochemistry,2002,47(1):539-614
|
CSCD被引
44
次
|
|
|
|
2.
Beran A. A scheelite mineralization in calc-silicate rocks of the Moldanubicum (Bohemian Massif) in Austria.
Mineralium Deposita,1985,20(1):16-22
|
CSCD被引
5
次
|
|
|
|
3.
Bouse R M. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona; implications for the sources of plutons and metals in porphyry copper deposits.
Economic Geology,1999,94(2):211-244
|
CSCD被引
12
次
|
|
|
|
4.
蔡运花. 赣南淘锡坑花岗岩地球化学特征及其对钨成矿作用的意义.
地质与资源,2016,25(3):275-280
|
CSCD被引
2
次
|
|
|
|
5.
蔡应雄. 黔西南紫木凼金矿床成矿物质来源:S-C-O-Pb-Sr同位素制约.
地球科学,2021,46(12):4316-4333
|
CSCD被引
6
次
|
|
|
|
6.
Canals A. Ore lead and sulphur isotope pattern from the low-temperature veins of the Catalonian Coastal Ranges (NE Spain).
Mineralium Deposita,1997,32(3):243-249
|
CSCD被引
21
次
|
|
|
|
7.
陈郑辉. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代.
地质通报,2006,25(4):496-501
|
CSCD被引
104
次
|
|
|
|
8.
陈智明. 滇东南南捞铜钨矿床S-Pb同位素特征.
矿物学报,2018,38(2):196-204
|
CSCD被引
1
次
|
|
|
|
9.
Chugaev A V. Sources and age of the gold mineralization of the irokinda deposit, northern transbaikalia: Evidence from Pb, S, Sr, and Nd isotopegeochemical and ~(39)Ar-~(40)Ar geochronological data.
Geochemistry International,2020,58(11):1208-1227
|
CSCD被引
1
次
|
|
|
|
10.
Chugaev A V. Lead isotope systematics of the orogenic gold deposits of the baikal-muya belt (northern transbaikalia): Contribution of the subcontinental lithospheric mantle in their genesis.
Geochemistry International,2022,60(13):1352-1379
|
CSCD被引
1
次
|
|
|
|
11.
Dai J F. Origin of the Woxi orogenic Au-Sb-W deposit in the West Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in situ S-Pb isotopic signatures.
Ore Geology Reviews,2022,150:105134
|
CSCD被引
7
次
|
|
|
|
12.
杜玉雕. 安徽逍遥钨多金属矿床成矿物质来源与成矿:碳、硫和铅同位素证据.
中国地质,2013,40(2):566-579
|
CSCD被引
13
次
|
|
|
|
13.
Fernandes N A. Metal sources in the Proterozoic Vazante-Paracatu sediment-hosted Zn District, Brazil: Constraints from Pb isotope compositions of metasiliciclastic units.
The Canadian Mineralogist,2021,59(5):1187-1205
|
CSCD被引
1
次
|
|
|
|
14.
Frost B R. A geochemical classification for granitic rocks.
Journal of Petrology,2001,42(11):2033-2048
|
CSCD被引
551
次
|
|
|
|
15.
郭春丽. 赣南淘锡坑钨多金属矿床花岗岩和云英岩岩石特征及云英岩中白云母~(40)Ar/~(39)Ar定年.
地质学报,2008,82(9):1274-1284
|
CSCD被引
22
次
|
|
|
|
16.
Guo C L. SHRIMP U-Pb (zircon), Ar-Ar (muscovite) and Re-Os (molybdenite) isotopic dating of the Taoxikeng tungsten deposit, South China Block.
Ore Geology Reviews,2011,43(1):26-39
|
CSCD被引
28
次
|
|
|
|
17.
郭春丽. 赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定.
矿床地质,2007,26(4):432-442
|
CSCD被引
61
次
|
|
|
|
18.
郭春丽.
赣南崇义一上犹地区与成矿有关中生代花岗岩类的研究及对南岭地区中生代成矿花岗岩的探讨(博士学位论文),2010
|
CSCD被引
1
次
|
|
|
|
19.
Hu R Z. Mantle-derived noble gases in ore-forming fluids of the graniterelated Yaogangxian tungsten deposit, Southeastern China.
Mineralium Deposita,2012,47(6):623-632
|
CSCD被引
35
次
|
|
|
|
20.
胡瑞忠.
华南陆块陆内成矿作用,2015
|
CSCD被引
7
次
|
|
|
|
|