帮助 关于我们

返回检索结果

基于非线性激活函数的零化神经网络及其在动态问题求解中的应用
Nonlinear Activation Function and Its Application on Solving Dynamic Problems Based on Zeroing Neural Network

查看参考文献26篇

刘万太 1   练红海 1,2 *   王芳 1   李谟发 1   邓鹏 1  
文摘 零化神经网络(zeroing neural network, ZNN)因其具有快速的收敛速度和较为出色的抗外界噪声干扰的能力,自被提出以来就有大量研究且广泛地应用于时变问题的求解.然而,目前所存在的零化神经网络模型的收敛速度和抗干扰能力仍然不尽如人意.因此,为进一步提高零化神经网络的性能,文章提出了一种固定时间收敛激活函数(fixed-time convergent activation function, FTCAF),然后,基于该激活函数建立了固定时间收敛的零化神经网络(fixed-time convergent zeroing neural network, FTCZNN)模型,并应用该模型对动态Sylvester方程(dynamic Sylvester equation, DSE)进行求解.理论分析证明了FTCZNN模型拥有固定的时间收敛上界和较为出色的抗外界噪声干扰的能力.此外,DSE数值仿真实验也证明了FTCZNN模型的优越性能.最后,FTCZNN模型被用于机械臂的轨迹跟踪实验,且实验结果再次证明了FTCZNN模型相较于传统ZNN模型拥有快速的收敛速度和较为出色的抗干扰能力,因此其实际应用能力也得到了验证.
其他语种文摘 Zeroing neural network (ZNN) has been widely used to solve time-varying problems since it was proposed because of its fast convergence speed and ability to resist external noise interference. However, the convergence speed and anti-interference ability of the existing zeroing neural network models are still not satisfactory. Therefore, to further improve the performance of ZNN, a new fixed-time convergent activation function (FTCAF) is designed in this paper. Then, a fixed-time convergent zeroing neural network (FTCZNN) model is established based on the proposed activation function and this model is applied to solve dynamic Sylvester equation (DSE). Theoretical analysis proves that the FTCZNN model has a fixed time convergence upper limit and strong anti-interference ability. In addition, numerical simulation results also demonstrate the superior performance of the FTCZNN model. Finally, FTCZNN model is used to realize the trajectory tracking experiment of the robot manipulator. The experimental results once again prove that the FTCZNN model has fast convergence speed and strong anti-interference ability, and its practical application ability is also verified.
来源 系统科学与数学 ,2024,44(7):1870-1884 【核心库】
DOI 10.12341/jssms23172
关键词 零化神经网络 ; 激活函数 ; 动态Sylvester方程 ; 机械臂轨迹跟踪
地址

1. 湖南电气职业技术学院风能工程学院, 湘潭, 411101  

2. 湖南科技大学信息与电气工程学院, 湘潭, 411201

语种 中文
文献类型 研究性论文
ISSN 1000-0577
学科 自动化技术、计算机技术
基金 湖南省自然科学基金 ;  湖南省教育厅项目
文献收藏号 CSCD:7757620

参考文献 共 26 共2页

1.  Qi Y. Discrete computational neural dynamics models for solving time-dependent Sylvester equations with applications to robotics and MIMO systems. IEEE Trans. Ind. Inf,2020,16(10):6231-6241 CSCD被引 5    
2.  Shaker H R. Control configuration selection for bilinear systems via generalized Hankel interaction index array. Int. J. Control,2015,88(1):30-37 CSCD被引 2    
3.  Yan X. New zeroing neural network models for solving nonstationary Sylvester equation with verifications on mobile manipulators. IEEE Trans. Ind. Inf,2019,15(9):5011-5022 CSCD被引 2    
4.  Beik F P A. On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Numer. Linear Algebr. Appl,2016,23(3):444-466 CSCD被引 2    
5.  Li S. A global variant of the COCR method for the complex symmetric Sylvester matrix equation AX + XB = C. Comput. Math. Appl,2021,94:104-113 CSCD被引 1    
6.  Zhang Z. Simulink comparison of varying parameter convergent-differential neuralnetwork and gradient neural network for solving online linear time-varying equations. 2016 12th World Congress on Intelligent Control and Automation (WCICA),2016:887-894 CSCD被引 1    
7.  Zhang Y. On exponential convergence of nonlinear gradient dynamics system with application to square root finding. Nonlinear Dyn,2015,79(2):983-1003 CSCD被引 2    
8.  Jin J. A nonlinear zeroing neural network and its applications on time-varying linear matrix equations solving, electronic circuit currents computing and robotic manipulator trajectory tracking. Comput. Appl. Math,2022,41:319 CSCD被引 1    
9.  Xiao L. A parameter-changing and complex-valued zeroing neural-network for finding solution of time-varying complex linear matrix equations in finite time. IEEE Trans. Ind. Inf,2021,17(10):6634-6643 CSCD被引 2    
10.  Zhang Z. Varying-parameter convergent differential neural solution to time-varying overdetermined system of linear equations. IEEE Trans. Autom. Control,2020,65:874-881 CSCD被引 2    
11.  Jin J. A robust predefined-time convergence zeroing neural network for dynamic matrix inversion. IEEE Trans. Cybern,2022 CSCD被引 1    
12.  Xiao L. New error function designs for finite-time ZNN models with application to dynamic matrix inversion. Neurocomputing,2020,402:395-408 CSCD被引 2    
13.  Xiao L. Zeroing neural networks for dynamic quaternion-valued matrix inversion. IEEE Trans. Ind. Inf,2022,18(3):1562-1571 CSCD被引 1    
14.  Jiang Y. Composite learning-based adaptive neural control for dual-arm robots with relative motion. IEEE Trans. Neural Netw. Learn. Syst,2022,33(3):1010-1021 CSCD被引 1    
15.  Huang S. New discrete-time zeroing neural network for solving time-variant underdetermined nonlinear systems under bound constraint. Neurocomputing,2022,487:214-227 CSCD被引 1    
16.  Tan N. A New Noise-Tolerant Dual-Neural-Network Scheme for Robust Kinematic Control of Robotic Arms With Unknown Models. IEEE/CAA J. Autom. Sinica,2022,9(10):1778-1791 CSCD被引 2    
17.  Zhao L. Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment. Mathe. Comput. Simula,2021,185:289-307 CSCD被引 1    
18.  Yang Y. Superior robustness of power-sum activation functions in zhang neural networks for time-varying quadratic programs perturbed with large implementation errors. Neural Comput. Appl,2013,22:175-185 CSCD被引 1    
19.  Li S. Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process. Lett,2013,37(2):189-205 CSCD被引 6    
20.  Zhang Z. A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation. IEEE Trans. Cybern,2017,48(11):3135-3148 CSCD被引 5    
引证文献 1

1 孙久云 基于局部网格的混合物理信息神经网络 系统科学与数学,2024,44(12):3760-3778
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号