MXene/芳纶纳米纤维柔性自支撑电极的构建及其在超级电容器中的应用
Construction of flexible MXene/aramid nanofibers self-supporting electrodes and application in supercapacitors
查看参考文献33篇
文摘
|
随着可穿戴电子产品的微型化发展,开发轻柔、灵活、体积小、能量密度高的柔性储能器件成为研究的热点。以芳纶纳米纤维(aramid nanofiber,ANF)作为纤维增强柱撑材料,采用真空抽滤的方法制备MXene/ANF柔性自支撑电极,避免引入集流体和黏合剂等“死体积”,并将其组装成全固态对称超级电容器。随着ANF含量增加至15%(质量分数), MXene/ANF自支撑电极的拉伸断裂强度增加至151.5 MPa,而电导率降低至1371.1 S/cm,在1 A/g的电流密度下表现出432.7 F/g的高比电容。组装的柔性对称全固态超级电容器的能量密度为25.7 Wh/kg,对应的功率密度为523.1 W/kg,具有优异的柔韧性和长循环寿命(10000周次循环充放电后,电容保持率为88.9%)。 |
其他语种文摘
|
With the development of miniaturized wearable electronics,flexible energy storage devices with soft,flexible,small size,and high energy density have attracted widespread attention. Aramid nanofibers (ANF) were utilized as fiber reinforcement and pillared structure materials to prepare MXene/ANF flexible self-supporting electrode through vacuum filtration, which were subsequently assembled into all-solid-state symmetric supercapacitors.With the increase of ANF content to 15%,the mechanical properties of MXene/ ANF self-supporting electrode increase to 151.5 MPa,while the conductivity decrease to 1371.1 S/cm. The MXene/ANF Self-supporting electrode shows a high specific capacitance of 432.7 F/g at the current density of 1 A/g. The assembled symmetric all-solid-state supercapacitors exhibit excellent mechanical flexibility and remarkable cycling stability, with an energy density of 25.7 Wh/kg at the power density of 523.1 W/kg and about 88.9% capacitance retention over 10000 cycles. |
来源
|
材料工程
,2024,52(6):51-58 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000196
|
关键词
|
芳纶纳米纤维
;
MXene
;
纤维增强
;
柔性自支撑电极
;
全固态超级电容器
|
地址
|
江南大学, 生态纺织教育部重点实验室, 江苏, 无锡, 214122
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
江苏省自然科学基金
|
文献收藏号
|
CSCD:7752852
|
参考文献 共
33
共2页
|
1.
Shi Q. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things.
Infomat,2020,2(6):1131-1162
|
CSCD被引
44
次
|
|
|
|
2.
Wang L. Application challenges in fiber and textile electronics.
Advanced Materials,2020,32(5):1901971
|
CSCD被引
28
次
|
|
|
|
3.
Zhao K. Highly stretchable,breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics.
Journal of Materials Science,2020,55(6):2439-2453
|
CSCD被引
1
次
|
|
|
|
4.
Wang C. Advanced carbon for flexible and wearable electronics.
Advanced Materials,2019,31(9):1801072
|
CSCD被引
83
次
|
|
|
|
5.
Wang X. Flexible energy-storage devices: design consideration and recent progress.
Advanced Materials,2014,26(28):4763-4782
|
CSCD被引
74
次
|
|
|
|
6.
黄英. 柔性储能电池电极的设计、制备与应用.
材料工程,2022,50(4):1-14
|
CSCD被引
3
次
|
|
|
|
7.
Lu X. Flexible solid-state supercapacitors: design,fabrication and applications.
Energy & Environmental Science,2014,7(7):2160-2181
|
CSCD被引
80
次
|
|
|
|
8.
Han L. A flexible,high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for highenergy-density zinc-ion hybrid supercapacitor.
Chemical Engineering Journal,2020,392:123733
|
CSCD被引
18
次
|
|
|
|
9.
Han J S. Preparation of fully flexible lithium metal batteries with free-standing beta-Na_(0.33)V_2O_5 cathodes and LAGP hybrid solid electrolytes.
Journal of Industrial and Engineering Chemistry,2021,94:368-375
|
CSCD被引
4
次
|
|
|
|
10.
Fan Z. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage.
Advanced Science,2018,5(10):1800750
|
CSCD被引
25
次
|
|
|
|
11.
Cai S. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors.
Journal of Materials Chemistry A,2017,5(43):22489-22494
|
CSCD被引
16
次
|
|
|
|
12.
Chen L. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@ polypyrrole@graphene film.
Chemical Engineering Journal,2018,334:184-190
|
CSCD被引
11
次
|
|
|
|
13.
Mao Y. Hierarchical core-shell Ag@Ni (OH)2@PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor.
Chemical Engineering Journal,2021,405:126984
|
CSCD被引
3
次
|
|
|
|
14.
Alhabeb M. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti_3C_2Tx MXene).
Chemistry of Materials,2017,29(18):7633-7644
|
CSCD被引
255
次
|
|
|
|
15.
党阿磊. 新型二维纳米材料MXene的制备及在储能领域的应用进展.
材料工程,2020,48(4):1-14
|
CSCD被引
13
次
|
|
|
|
16.
Wu X. High energy density of two-dimensional MXene/NiCo-LDHs interstratification assem-bly electrode:understanding the role of interlayer ions and hydration.
Chemical Engineering Journal,2020,380:122456
|
CSCD被引
9
次
|
|
|
|
17.
Butt R. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries.
International Journal of Energy Research,2019,43(9):4995-5003
|
CSCD被引
3
次
|
|
|
|
18.
Zhao M. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage.
Advanced Materials,2017,29(37):1702410
|
CSCD被引
94
次
|
|
|
|
19.
Yang B. Timesaving,highefficiency approaches to fabricate aramid nanofibers.
ACS Nano,2019,13(7):7886-7897
|
CSCD被引
30
次
|
|
|
|
20.
Liu T. Uniform generation of NiCo_2S_4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors.
Journal of Colloid and Interface Science,2019,556:743-752
|
CSCD被引
4
次
|
|
|
|
|