帮助 关于我们

返回检索结果

MXene/芳纶纳米纤维柔性自支撑电极的构建及其在超级电容器中的应用
Construction of flexible MXene/aramid nanofibers self-supporting electrodes and application in supercapacitors

查看参考文献33篇

文摘 随着可穿戴电子产品的微型化发展,开发轻柔、灵活、体积小、能量密度高的柔性储能器件成为研究的热点。以芳纶纳米纤维(aramid nanofiber,ANF)作为纤维增强柱撑材料,采用真空抽滤的方法制备MXene/ANF柔性自支撑电极,避免引入集流体和黏合剂等“死体积”,并将其组装成全固态对称超级电容器。随着ANF含量增加至15%(质量分数), MXene/ANF自支撑电极的拉伸断裂强度增加至151.5 MPa,而电导率降低至1371.1 S/cm,在1 A/g的电流密度下表现出432.7 F/g的高比电容。组装的柔性对称全固态超级电容器的能量密度为25.7 Wh/kg,对应的功率密度为523.1 W/kg,具有优异的柔韧性和长循环寿命(10000周次循环充放电后,电容保持率为88.9%)。
其他语种文摘 With the development of miniaturized wearable electronics,flexible energy storage devices with soft,flexible,small size,and high energy density have attracted widespread attention. Aramid nanofibers (ANF) were utilized as fiber reinforcement and pillared structure materials to prepare MXene/ANF flexible self-supporting electrode through vacuum filtration, which were subsequently assembled into all-solid-state symmetric supercapacitors.With the increase of ANF content to 15%,the mechanical properties of MXene/ ANF self-supporting electrode increase to 151.5 MPa,while the conductivity decrease to 1371.1 S/cm. The MXene/ANF Self-supporting electrode shows a high specific capacitance of 432.7 F/g at the current density of 1 A/g. The assembled symmetric all-solid-state supercapacitors exhibit excellent mechanical flexibility and remarkable cycling stability, with an energy density of 25.7 Wh/kg at the power density of 523.1 W/kg and about 88.9% capacitance retention over 10000 cycles.
来源 材料工程 ,2024,52(6):51-58 【核心库】
DOI 10.11868/j.issn.1001-4381.2022.000196
关键词 芳纶纳米纤维 ; MXene ; 纤维增强 ; 柔性自支撑电极 ; 全固态超级电容器
地址

江南大学, 生态纺织教育部重点实验室, 江苏, 无锡, 214122

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 化学工业
基金 江苏省自然科学基金
文献收藏号 CSCD:7752852

参考文献 共 33 共2页

1.  Shi Q. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. Infomat,2020,2(6):1131-1162 CSCD被引 44    
2.  Wang L. Application challenges in fiber and textile electronics. Advanced Materials,2020,32(5):1901971 CSCD被引 28    
3.  Zhao K. Highly stretchable,breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics. Journal of Materials Science,2020,55(6):2439-2453 CSCD被引 1    
4.  Wang C. Advanced carbon for flexible and wearable electronics. Advanced Materials,2019,31(9):1801072 CSCD被引 83    
5.  Wang X. Flexible energy-storage devices: design consideration and recent progress. Advanced Materials,2014,26(28):4763-4782 CSCD被引 74    
6.  黄英. 柔性储能电池电极的设计、制备与应用. 材料工程,2022,50(4):1-14 CSCD被引 3    
7.  Lu X. Flexible solid-state supercapacitors: design,fabrication and applications. Energy & Environmental Science,2014,7(7):2160-2181 CSCD被引 80    
8.  Han L. A flexible,high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for highenergy-density zinc-ion hybrid supercapacitor. Chemical Engineering Journal,2020,392:123733 CSCD被引 18    
9.  Han J S. Preparation of fully flexible lithium metal batteries with free-standing beta-Na_(0.33)V_2O_5 cathodes and LAGP hybrid solid electrolytes. Journal of Industrial and Engineering Chemistry,2021,94:368-375 CSCD被引 4    
10.  Fan Z. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Advanced Science,2018,5(10):1800750 CSCD被引 25    
11.  Cai S. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. Journal of Materials Chemistry A,2017,5(43):22489-22494 CSCD被引 16    
12.  Chen L. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@ polypyrrole@graphene film. Chemical Engineering Journal,2018,334:184-190 CSCD被引 11    
13.  Mao Y. Hierarchical core-shell Ag@Ni (OH)2@PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor. Chemical Engineering Journal,2021,405:126984 CSCD被引 3    
14.  Alhabeb M. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti_3C_2Tx MXene). Chemistry of Materials,2017,29(18):7633-7644 CSCD被引 255    
15.  党阿磊. 新型二维纳米材料MXene的制备及在储能领域的应用进展. 材料工程,2020,48(4):1-14 CSCD被引 13    
16.  Wu X. High energy density of two-dimensional MXene/NiCo-LDHs interstratification assem-bly electrode:understanding the role of interlayer ions and hydration. Chemical Engineering Journal,2020,380:122456 CSCD被引 9    
17.  Butt R. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries. International Journal of Energy Research,2019,43(9):4995-5003 CSCD被引 3    
18.  Zhao M. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Advanced Materials,2017,29(37):1702410 CSCD被引 94    
19.  Yang B. Timesaving,highefficiency approaches to fabricate aramid nanofibers. ACS Nano,2019,13(7):7886-7897 CSCD被引 30    
20.  Liu T. Uniform generation of NiCo_2S_4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. Journal of Colloid and Interface Science,2019,556:743-752 CSCD被引 4    
引证文献 1

1 赵梓文 MXene负载柔性碳布及其电化学性能 材料工程,2025,53(2):167-174
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号