锂金属负极界面及体相稳定化策略研究进展
Research progress in stabilization of interface and bulk structure of lithium metal anodes
查看参考文献68篇
文摘
|
随着信息化、电动化和新能源技术的快速发展,便携电子、电动汽车和储能设施需要更高能量密度的电化学储能电池,但广泛使用的锂离子电池的能量密度正逐步接近极限,难以满足上述需求。因此亟需发展更高能量密度的电化学体系。锂金属负极具有极高的理论容量(3860 mAh·g~(-1))和最低的氧化还原电势(-3.04 V vs SHE),被认为是实现下一代高能量密度电池的理想材料。然而在几十年的发展过程中,锂金属电池较低的循环寿命和安全性问题严重制约了其实用化。本文从锂金属电池的发展历程出发,分析锂金属负极反应活性高、锂枝晶、死锂和体积膨胀等问题及作用机理,并就上述问题分别从界面设计和体相设计方面综述应对策略,包括非原位/原位生成的界面层保护、合金化锂负极以及三维复合锂负极,最后针对实效电池的约束条件、电极串扰及大容量电池的失效机制等实用化锂负极未来发展进行探讨和展望。 |
其他语种文摘
|
With the rapid development of information technology,electrification and new energy technologies, portable electric devices,electric vehicles and energy storage facilities require rechargeable batteries with higher energy density. However, the energy density of widely used lithium-ion batteries is approaching the limit, which cannot meet the above demands. Therefore it is urgent to explore new electrochemical systems with higher energy density. Lithium metal anode is a promising candidate for achieving nextgeneration high-energy-density batteries due to its ultrahigh theoretical capacity (3860 mAh·g~(-1)) and most negative electrochemical potential (-3.04 V vs SHE). However, during the few decades, the practical application of lithium metal batteries has been hindered by short lifetime and safety issues. In this paper, the history and development of lithium metal batteries were introduced, and the current issues and corresponding mechanisms were analyzed, such as high reactivity, lithium dendrites, dead lithium and volume expansion. Some strategies to deal with the above problems in terms of interface and bulk structure design, including the protection layers formed ex situ/in situ, lithium-based alloys and 3D composite lithium metal anodes,were proposed. Finally,the future developments of practical lithium metal anodes based on constraints for actual batteries, crosstalk of electrodes and failure mechanisms of large-capacity batteries were discussed. |
来源
|
材料工程
,2024,52(6):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000507
|
关键词
|
锂金属负极
;
二次电池
;
界面设计
;
体相设计
|
地址
|
1.
天津大学化工学院, 天津, 300350
2.
中国电子科技集团第十八研究所, 中国电子科技集团化学与物理电源重点实验室, 天津, 300384
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;电工技术;化学工业 |
文献收藏号
|
CSCD:7752848
|
参考文献 共
68
共4页
|
1.
Li M. 30 years of lithium-ion batteries.
Advanced Materials,2018,30(33):1800561
|
CSCD被引
355
次
|
|
|
|
2.
Whittingham M S. Electrical energy storage and intercalation chemistry.
Science,1976,192(4244):1126-1127
|
CSCD被引
86
次
|
|
|
|
3.
Tarascon J M. Issues and challenges facing rechargeable lithium batteries.
Nature,2001,414(6861):359-367
|
CSCD被引
1279
次
|
|
|
|
4.
Cheng X B. Toward safe lithium metal anode in rechargeable batteries: a review.
Chemical Reviews,2017,117(15):10403-10473
|
CSCD被引
567
次
|
|
|
|
5.
Lu D. Failure mechanism for fastcharged lithium metal batteries with liquid electrolytes.
Advanced Energy Materials,2014,5(3):1400993
|
CSCD被引
2
次
|
|
|
|
6.
Dollé M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells.
Electrochemical and Solid-State Letters,2002,5(12):286
|
CSCD被引
23
次
|
|
|
|
7.
Aryanfar A. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries.
Physical Chemistry Chemical Physics,2014,16(45):24965-24970
|
CSCD被引
13
次
|
|
|
|
8.
Chazalviel J N. Electrochemical aspects of the generation of ramified metallic electrodeposits.
Physical Review A,1990,42(12):7355-7367
|
CSCD被引
104
次
|
|
|
|
9.
Chen L. High-energy Li metal battery with lithiated host.
Joule,2019,3(3):732-744
|
CSCD被引
28
次
|
|
|
|
10.
Arakawa M. Lithium electrode cycleability and morphology dependence on current density.
Journal of Power Sources,1993,43(1/3):27-35
|
CSCD被引
4
次
|
|
|
|
11.
Lin D. Reviving the lithium metal anode for high-energy batteries.
Nature Nanotechnology,2017,12(3):194-206
|
CSCD被引
520
次
|
|
|
|
12.
Xu G. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries.
Angewandte Chemie International Edition,2021,60(14):7770-7776
|
CSCD被引
5
次
|
|
|
|
13.
Lin D. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon.
Nano Letters,2017,17(6):3731-3737
|
CSCD被引
45
次
|
|
|
|
14.
Li N W. An artificial solid electrolyte interphase layer for stable lithium metal anodes.
Advanced Materials,2015,28(9):1853-1858
|
CSCD被引
143
次
|
|
|
|
15.
Liang X. A facile surface chemistry route to a stabilized lithium metal anode.
Nature Energy,2017,2(9):17119
|
CSCD被引
88
次
|
|
|
|
16.
Tu Z. Fast ion transport at solid-solid interfaces in hybrid battery anodes.
Nature Energy,2018,3(4):310-316
|
CSCD被引
59
次
|
|
|
|
17.
Li N W. A flexible solid electrolyte interphase layer for long-life lithium metal anodes.
Angewandte Chemie International Edition,2018,57(6):1505-1509
|
CSCD被引
73
次
|
|
|
|
18.
Yang Y. Regulating the electron structure of covalent organic frameworks by strong electron-withdrawing nitro to construct specific Li+ oriented channel.
Advanced Energy Materials,2023,13(26):2300725
|
CSCD被引
2
次
|
|
|
|
19.
Xu R. Artificial soft-rigid protective layer for dendrite-free lithium metal anode.
Advanced Functional Materials,2018,28(8):1705838
|
CSCD被引
83
次
|
|
|
|
20.
Liu Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes.
Advanced Materials,2016,29(10):1605531
|
CSCD被引
3
次
|
|
|
|
|