土壤逐渐干旱条件下玉米和构树光合特性的变化
Changes in Photosynthetic Characteristics of Zea mays L. and Broussonetia Papyrifera (Linn.) L'Her. ex Ven. under Progressive Soil Drought
查看参考文献50篇
文摘
|
在气候和喀斯特地形地貌的影响下,一些喀斯特地区依旧处在日益严重和频发的干旱情况中,这会对植物的光合特性和叶绿素荧光特性产生严重的影响。本文以喀斯特地区两种土壤(粉砂质壤土(Ld)和粉砂质粘壤土(Lc))和两种植物(玉米(Zea mays L.)和构树(Broussonetia Papyrifera (Linn.)L'Herex Ven. ))为研究对象,研究了在逐渐干旱的条件下构树和玉米叶片的光合参数和叶绿素荧光变量的变化规律。研究结果表明,干旱胁迫期间,两种植物的净光合速率(A)、蒸腾速率(E)和气孔导度(gsw)均逐渐降低,胞间CO_2浓度(Ci)后期显著上升,水分利用效率(WUE)均表现为先上升后下降的趋势。在相同土壤中玉米的WUE高于构树,不同土壤中同种植物的最大WUE均为Ld高于Lc。玉米在两种土壤条件下的初始荧光(Fo)随时间的变化呈现前期先降低,中期稳定,后期再快速升高的趋势,最大光化学效率(Fv/Fm)的变化趋势与Fo相反。构树的Fo则只存在先下降后升高两个阶段,其Fv/Fm的变化趋势也与Fo相反。同时根据叶片A、gsw和Ci的变化趋势判别出气孔限制和非气孔限制分别是干旱前中期和后期影响玉米和构树光合特性的主要因素,且Lc和Ld中玉米的两种限制的交替时间节点分别为第10天和第9天,构树为第10天和第7天,当超过这个时间点,植物即使复水光合作用也无法回升,也可称此节点为调亏灌溉点。本研究可为了解喀斯特地区植物对干旱环境的适应性和用水特征以及田间水分管理提供科学依据。 |
其他语种文摘
|
Under the influence of climate and karst topography, some karst areas are still experiencing increasingly severe and frequent drought conditions, seriously impacting the photosynthetic and chlorophyll fluorescence properties of plants. In this study, two soils (silty loam (Ld) and silty clay loam (Lc)) and two plant species (Zea mays L. and Broussonetia papyrifera (Linn.) L'Her. ex Ven.)) in the karst area were taken to study the changes in photosynthetic parameters and chlorophyll fluorescence variables in brachycardia and maize leaves under progressive drought conditions. The results showed that during drought stress, the net photosynthetic rate (A), transpiration rate (E) and stomatal conductivity (gsw) of both plants decreased gradually, the intercellular CO_2 concentration (Ci) increased significantly during the late stage, and the water use efficiency (WUE) first increased and then decreased. The WUE of Zea mays L. was higher than that of Broussonetia papyrifera (Linn.) L'Her. ex Ven. in the same soil, and the maximum WUE of the same plant species in different soils was higher in Ld than in Lc. The initial fluorescence (Fo) of Zea mays L. under both soil conditions decreased firstly during the early stage, stabilizing during the middle stage, and then increased rapidly during the late stage. The maximum photochemical efficiency (Fv/Fm) showed an opposite trend to that of Fo. In comparison, Fo of Broussonetia papyrifera (Linn.) L'Her. ex Ven. only decreased during the early stage and then increased, and its Fv/Fm trend was also opposite to that of Fo. According to the trend of leaf A, gsw and Ci, stomatal restriction and non-stomatal restrictions were identified as the main factors affecting the photosynthetic characteristics of Zea mays L. and Broussonetia papyrifera (Linn.)L'Her. ex Ven. in the pre-middle and late drought period, respectively. Moreover, the alternating time nodes of the two types of restriction in Lc and Ld were day 10 and day 9 for Zea mays L. and day 10 and day 7 for Broussonetia papyrifera (Linn.)L'Her. ex Ven. When these time points were exceeded, the plants could not recover from photosynthesis even after rehydration, this node can be referred as the point of deficit regulation irrigation. This study can deliver a scientific fundament for understanding the adaptability and water use characteristics of plants to arid environment and field water management in karst areas. |
来源
|
地球与环境
,2024,52(3):365-374 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2023.51.017
|
关键词
|
喀斯特
;
土壤
;
玉米
;
构树
;
光合参数
;
叶绿素荧光参数
;
干旱胁迫
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州农业职业学院, 贵州, 清镇, 551400
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
农业基础科学 |
基金
|
贵州省科技厅扶持计划项目
;
国家自然科学基金
;
贵州省科技创新人才项目
|
文献收藏号
|
CSCD:7748846
|
参考文献 共
50
共3页
|
1.
Passioura J B. Improving productivity of crops in water-limited environments.
Advances in Agronomy,2010,106:37-75
|
CSCD被引
4
次
|
|
|
|
2.
DeVincentis A J.
Scales of sustainable agricultural water management,2020
|
CSCD被引
1
次
|
|
|
|
3.
胡林生.
壤土和壤质黏土中油菜和诸葛菜水分利用的研究,2016
|
CSCD被引
1
次
|
|
|
|
4.
陈志成. 不同土壤水分条件下珍珠油杏的光合光响应特征.
西北植物学报,2012,32(10):2102-2107
|
CSCD被引
8
次
|
|
|
|
5.
高雪梅. 中国农业节水灌溉现状,发展趋势及存在问题.
天津农业科学,2012,18(1):54-56
|
CSCD被引
5
次
|
|
|
|
6.
Gude V G. Desalination and water reuse to address global water scarcity.
Reviews in Environmental Science and Bio/Technology,2017,16(4):591-609
|
CSCD被引
2
次
|
|
|
|
7.
Gleick Peter H. Freshwater scarcity.
Annual Review of Environment and Resources,2021,46:319-348
|
CSCD被引
3
次
|
|
|
|
8.
Daryanto S. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review.
Agricultural Water Management,2017,179:18-33
|
CSCD被引
20
次
|
|
|
|
9.
Salehi-Lisar S Y. Agronomic crop responses and tolerance to drought stress.
Agronomic Crops,2020,3:63-91
|
CSCD被引
1
次
|
|
|
|
10.
Seneviratne S I. Investigating soil moisture-climate interactions in a changing climate: a review.
Earth-Science Reviews,2010,99(3/4):125-161
|
CSCD被引
218
次
|
|
|
|
11.
解婷婷.
塔里木沙漠公路防护林植物水分生理生态特性对灌溉量的响应,2008
|
CSCD被引
2
次
|
|
|
|
12.
Xing D K. Leaf tensity: a method for rapid determination of water requirement information in Brassica napus L.
Journal of Plant Interactions,2018,13(1):380-387
|
CSCD被引
1
次
|
|
|
|
13.
Farooq M. Plant drought stress: effects, mechanisms and management.
Agronomy for Sustainable Development,2009,29(1):185-212
|
CSCD被引
165
次
|
|
|
|
14.
Damm A. Remote sensing of plant-water relations: an overview and future perspectives.
Journal of Plant Physiology,2018,227:3-19
|
CSCD被引
2
次
|
|
|
|
15.
Wang C. Soil moisture-plant interactions: an ecohydrological review.
Journal of Soils and Sediments,2019,19(1):1-9
|
CSCD被引
26
次
|
|
|
|
16.
Flexas J. Gas exchange and hydraulics during drought in crops: who drives whom?.
Journal of Experimental Botany,2018,69(16):3791-3795
|
CSCD被引
2
次
|
|
|
|
17.
刘吉利. 苗期干旱及复水对花生光合特性及水分利用效率的影响.
中国农业科学,2011,44(3):469-476
|
CSCD被引
46
次
|
|
|
|
18.
Ammar A. Comparative physiological behavior of fig (Ficus carica L.) cultivars in response to water stress and recovery.
Scientia Horticulturae,2020,260:108881
|
CSCD被引
7
次
|
|
|
|
19.
Khaleghnezhad V. Concentrations-dependent effect of exogenous abscisic acid on photosynthesis, growth and phenolic content of Dracocephalum moldavica L. under drought stress.
Planta,2021,253(6):1-18
|
CSCD被引
2
次
|
|
|
|
20.
Liu M. Response of photosynthesis and chlorophyll fluorescence to drought stress in two maize cultivars.
African Journal of Agricultural Research,2012,7(34):4751-4760
|
CSCD被引
1
次
|
|
|
|
|