基于16S rRNA基因高通量测序的乌江流域梯级水库表层沉积物微生物群落分析
Microbial Community Analysis in Surface Sediments of Wujiang Cascade Reservoirs Based on 16S rRNA High-throughput Sequencing
查看参考文献47篇
文摘
|
微生物群落在湖库沉积物生态系统的物质循环中发挥着重要作用,但对大规模梯级筑坝形成水库库区沉积物微生物的研究并不多见。本工作以乌江干流7个梯级水库为研究对象,针对微生物非常活跃的表层沉积物,基于16S rRNA基因高通量测序技术分析不同水库微生物群落多样性和组成差异及其对环境因子的响应。结果表明:乌江流域梯级水库表层沉积物中,微生物群落α多样性指数总体上呈现从上游到下游逐渐降低的趋势;β多样性表现为洪家渡水库和乌江渡水库的微生物群落与其他水库差异性较大,这可能与它们较长的库龄或滞水时间有关。变形菌门是各水库沉积物中微生物群落门水平上相对丰度最高的优势菌门(Proteobacteria,17.28%~30.40%),其中γ-变形菌纲为纲水平的优势菌(Gammaproteobacteria,12.14%~28.08%)。库龄是控制水库表层沉积物微生物群落结构特征的主要环境因子,微生物群落多样性和稳定性随着水库库龄的增大而降低,微生物群落构建过程主要受随机性过程的主导。研究结果揭示了不同库龄梯级水库微生物群落的演化机制,为水库合理开发和水资源的可持续利用提供重要科学依据。 |
其他语种文摘
|
Microbial communities play an important role in the material cycling in lake sediment ecosystems. However, there are only a few studies on sediment microbes in the reservoirs formed by large-scale cascade damming. Here, the diversity and composition of microbial communities in different reservoirs, as well as their responses to environmental factors were analyzed in the surface sediments of seven cascade reservoirs in the main stream of the Wujiang River. The results show that the α-diversity index of microbial communities generally decreased from upstream to downstream in the surface sediments of the Wujiang cascade reservoirs. The β-diversity reveals that the microbial communities of Hongjiadu and Wujiangdu Reservoir were different from the others. This may be due to their longer reservoir age and stagnation time. Proteobacteria is the dominant phylum (17.28%-30.40%) at the level of microbial community in all reservoir sediments, and Gammaproteobacteria is the major phylum at the class level (12.14%-28.08%). Reservoir age is the main environmental factor controlling the structural characteristics of microbial communities in surface sediments. The diversity and stability of microbial communities decreased with increasing reservoir age, and the construction of microbial community is mainly governed by the stochastic process. This study reveals the evolution mechanism of microbial communities in cascade reservoirs of different ages, delivering an indispensable scientific basis for the reservoir development and the sustainable use of water resources. |
来源
|
地球与环境
,2024,52(3):267-276 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2023.51.012
|
关键词
|
沉积物
;
微生物群落
;
多样性
;
环境因子
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
水利部中国科学院水工程生态研究所, 水利部水工程生态效应与生态修复重点实验室, 武汉, 430079
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
微生物学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7748837
|
参考文献 共
47
共3页
|
1.
刘小龙. 河流梯级开发对乌江中上游水体溶存N_2O释放的影响.
上海大学学报:自然科学版,2015,21(3):301-310
|
CSCD被引
6
次
|
|
|
|
2.
刘丛强. 河流筑坝拦截的水环境响应——来自地球化学的视角.
长江流域资源与环境,2009,18(4):384-396
|
CSCD被引
104
次
|
|
|
|
3.
范成新. 湖泊沉积物—水界面研究进展与展望.
湖泊科学,2019,31(5):1191-1218
|
CSCD被引
47
次
|
|
|
|
4.
Peng B. Lead isotopic fingerprinting as a tracer to identify the sources of heavy metals in sediments from the four rivers' inlets to Dongting Lake, China.
CATENA,2022,219:106594
|
CSCD被引
3
次
|
|
|
|
5.
Chen M S. High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide.
Water Research,2021,190:116711
|
CSCD被引
11
次
|
|
|
|
6.
Hoshino T. Global diversity of microbial communities in marine sediment.
Proceedings of the National Academy of Sciences of the United States of America,2020,117(44):27587-27597
|
CSCD被引
16
次
|
|
|
|
7.
Liu L. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China.
The ISME Journal,2015,9(9):2068-2077
|
CSCD被引
39
次
|
|
|
|
8.
Ruban V. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment.
Journal of Environmental Monitoring,1999,1(1):51-56
|
CSCD被引
99
次
|
|
|
|
9.
Yates M D. Convergent development of anodic bacterial communities in microbial fuel cells.
The ISME Journal,2012,6(11):2002-2013
|
CSCD被引
18
次
|
|
|
|
10.
Peter C. Mechanisms of maintenance of species diversity.
Annual Review of Ecology and Systematics,2000,31:343-358,C1,359
|
CSCD被引
227
次
|
|
|
|
11.
Chave J. Neutral theory and community ecology.
Ecology Letters,2004,7(3):241-253
|
CSCD被引
60
次
|
|
|
|
12.
Ning D L. A general framework for quantitatively assessing ecological stochasticity.
Proceedings of the National Academy of Sciences of the United States of America,2019,116(34):16892-16898
|
CSCD被引
42
次
|
|
|
|
13.
Sloan W T. Quantifying the roles of immigration and chance in shaping prokaryote community structure.
Environmental Microbiology,2006,8(4):732-740
|
CSCD被引
60
次
|
|
|
|
14.
文新宇. 缓丘地带黄河镇水库微生物群落多样性特征.
应用与环境生物学报,2022,28(1):167-174
|
CSCD被引
3
次
|
|
|
|
15.
Abia A L K. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use.
Science of the Total Environment,2018,616/617:326-334
|
CSCD被引
12
次
|
|
|
|
16.
Yu S. Spatial and temporal dynamics of bacterioplankton community composition in a subtropical dammed Karst River of southwestern China.
MicrobiologyOpen,2019,8(9):e00849
|
CSCD被引
1
次
|
|
|
|
17.
Droppo I G. Microbial interactions with naturally occurring hydrophobic sediments: influence on sediment and associated contaminant mobility.
Water Research,2016,92:121-130
|
CSCD被引
7
次
|
|
|
|
18.
Ghai R. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing.
Molecular Ecology,2014,23(24):6073-6090
|
CSCD被引
7
次
|
|
|
|
19.
何一凡. 重金属污染对不同生境中微生物群落结构的影响.
环境科学,2023,44(4):2103-2112
|
CSCD被引
6
次
|
|
|
|
20.
Dang C Y. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou Reservoir, China.
Applied Microbiology and Biotechnology,2018,102(7):3399-3410
|
CSCD被引
10
次
|
|
|
|
|