柔性液态金属剪切力传感器
Flexible Liquid Metal Shear Force Sensor
查看参考文献25篇
文摘
|
使用柔性微管液态金属传感器作为应力测量元件,设计制作了一种剪切力传感器.剪切力传感器由弹性聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)杆件、支撑垫片和柔性微管传感器组成.探讨了剪切力传感器的工作原理以及测量元件的传感机制.弹性PDMS杆件受到剪切力作用后变形,使用剪切力传感器对杆件的剪切角进行测量,并将测量结果与灰度重心法测得的参考值进行对比,系统分析了装配间隙δ、微管布置距离L对测量精度的影响.结果表明:当以弹性PDMS杆件为变形体时,剪切力传感器可在0.004 7~0.038 rad的转角范围内进行有效测量;测量误差随着装配间隙δ的增大而增大,随着微管布置距离L增大而减小.所设计剪切力传感器具有灵敏度高、抗干扰能力强等优点,为剪切力的测量提供了一种新的工具. |
其他语种文摘
|
A shear force sensor is designed and manufactured using a flexible microtubule liquid metal sensor as the stress measurement element.The shear force sensor consists of an elastic PDMS (polydimethylsiloxane) member,a metal support gasket,and a flexible microtubule sensor.The working principle of the shear force sensor and the sensing mechanism of the measuring element are discussed.The shear force sensor is used to measure the shear angle of the PDMS truss members,and the measurement results are compared with the reference values measured by the gray weighted centroid method.The effects of the assemble clearance δ and the microtube arrangement distance L on the measurement accuracy are systematically analyzed.The results show that when the elastic PDMS member is used as the deformation unit,the shear force sensor can work effectively in the shear angle range of 0.004 7 rad~0.038 rad.The measurement error increases with the increase of the assemble clearance δ,and decreases with the increase of the microtubule arrangement distance L.The proposed shear force sensor has the advantages of high sensitivity and strong anti-interference ability,providing a new tool for the measurement of shear force. |
来源
|
力学季刊
,2024,45(2):411-418 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2024.02.011
|
关键词
|
液态金属
;
柔性传感器
;
剪切力
|
地址
|
上海交通大学船舶海洋与建筑工程学院, 上海, 200240
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
力学 |
基金
|
国家自然科学基金
;
上海交通大学医工(理)交叉研究基金
|
文献收藏号
|
CSCD:7744708
|
参考文献 共
25
共2页
|
1.
Monte A. Fabrication of a shear stress sensor matrix using standard printed circuit board and overmolding technologies.
IEEE Transactions on Components, Packaging and Manufacturing Technology,2020,10(3):479-486
|
CSCD被引
1
次
|
|
|
|
2.
邱翔. 非牛顿流体在渐变管中压力和剪切应力的二次摄动解.
力学季刊,2019,40(3):613-625
|
CSCD被引
2
次
|
|
|
|
3.
覃开蓉. 动脉中非平稳流动壁面剪切力及其Hilbert-Huang变换.
力学季刊,2007,28(1):8-12
|
CSCD被引
2
次
|
|
|
|
4.
Wang H J. High sensitivity and flexible fabric strain sensor based on electrochemical graphene.
Japanese Journal of Applied Physics,2021,60(SC)
|
CSCD被引
1
次
|
|
|
|
5.
孙玉航. 一类平衡大气边界层边界条件研究.
力学季刊,2015,36(2):328-335
|
CSCD被引
3
次
|
|
|
|
6.
李博. 介质与静压对激波管校准压阻式绝压传感器动态特性的影响.
爆炸与冲击,2020,40(5):054101
|
CSCD被引
1
次
|
|
|
|
7.
陆林军. 基于应力波传播机理的混凝土无损检测研究综述.
力学季刊,2021,42(2):197-216
|
CSCD被引
6
次
|
|
|
|
8.
彭华. 用于断层测量的温度补偿光纤外腔型法布里-珀罗位移传感器.
地质力学学报,2013,19(3):315-324
|
CSCD被引
2
次
|
|
|
|
9.
Morimura H. A high-resolution capacitive fingerprint sensing scheme with charge-transfer technique and automatic contrast emphasis.
Symposium on VLSI Circuits,1999:157-160
|
CSCD被引
1
次
|
|
|
|
10.
Sergio M. A textile based capacitive pressure sensor.
IEEE Sensors Journal,2002,2:1625-1630
|
CSCD被引
1
次
|
|
|
|
11.
Filanc-Bowen T R. Novel sensor technology for shear and normal strain detection with generalized electrostriction.
IEEE Sensors Journal,2002,2:1648-1653
|
CSCD被引
1
次
|
|
|
|
12.
Johnston D. A full tactile sensing suite for dextrous robot hands and use in contact force control.
Proceedings of IEEE International Conference on Robotics and Automation. 4,1996:3222-3227
|
CSCD被引
2
次
|
|
|
|
13.
Kim H K. Capacitive tactile sensor array for touch screen application.
Sensors and Actuators A: Physical,2011,165(1):2-7
|
CSCD被引
10
次
|
|
|
|
14.
沈维亮. 基于光纤光栅传感器的玻璃纤维复合材料层间应变测试的实验分析.
力学季刊,2013,34(3):463-469
|
CSCD被引
3
次
|
|
|
|
15.
Candiani A. A shear sensing pad, based on ferrofluidic actuation in a microstructured optical fiber.
IEEE Journal of Selected Topics in Quantum Electronics,2017,23(2):210-216
|
CSCD被引
2
次
|
|
|
|
16.
Rajan K S. Capacitive sensing of interfacial stresses.
IEEE Sensors Journal,2010:2569-2572
|
CSCD被引
1
次
|
|
|
|
17.
Wang W C. Development of a directional sensitive pressure and shear sensor.
Proceedings of SPIE. 4702,2002:212-221
|
CSCD被引
1
次
|
|
|
|
18.
Liu Y. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring.
ACS Nano,2017,11(10):9614-9635
|
CSCD被引
73
次
|
|
|
|
19.
Bao Z N. Flexible and stretchable devices.
Advanced Materials,2016,28(22):4177-4179
|
CSCD被引
24
次
|
|
|
|
20.
Kenry. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications.
Microsystems & Nanoengineering,2016,2:16043
|
CSCD被引
19
次
|
|
|
|
|