航改型燃气轮机部件蠕变寿命预测模型研究
Investigation on Creep Life Prediction Model for the Aero-Derivative Gas Turbine
查看参考文献28篇
文摘
|
航改型燃气轮机因其研制基础好、设计周期短、结构紧凑、燃料适应性强等优点,在海上油气平台、船舶动力及管道输送等领域得到了广泛应用.航改型燃气轮机叶片在高温、高压等苛刻环境下工作时,蠕变是其主要失效方式之一.为确保叶片的运行可靠性,通常选用抗蠕变性能较好的镍基合金作为制造材料.该种材料蠕变第三阶段较为明显,占比较高,当前的蠕变损伤本构方程难以精确表征镍基合金蠕变第三阶段的失效行为.针对上述问题,本文提出了一种可合理描述蠕变第三阶段的损伤本构模型,并得到了不同温度下蠕变实验数据的验证.该模型的提出可为航改型燃气轮机高温部件的寿命精准预测和可靠性设计提供较好的理论基础. |
其他语种文摘
|
Because of its advantages of good development foundation,short design cycle,compact structure and strong fuel adaptability,the aero-derivative gas turbine has been widely used in the field of offshore oil and gas platform,marine power and pipeline transportation,etc.For the aero-derivative gas turbine blades working in high temperature,high pressure and other harsh environments,creep is one of the main failure modes.In order to ensure the operation reliability of the blade,nickel-based alloy with strong creep resistance is usually selected as its constitutive material.The nickel-based alloy has obvious third stage of creep,occupying a relatively high proportion of its whole life.The current creep damage constitutive model is difficult to accurately characterize the failure behavior of the third stage of creep for the nickel-based alloys.In response to the above problem,a creep damage constitutive model which can reasonably describe the third stage of creep of the high temperature materials is proposed in this paper.The model is validated by comparing with the creep experimental data under different temperatures.The proposed model can provide a theoretical guideline for accurate life prediction and reliability design of the high temperature components of aero-derivative gas turbines. |
来源
|
力学季刊
,2024,45(2):376-386 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2024.02.008
|
关键词
|
航改型燃气轮机
;
蠕变
;
寿命预测
;
本构模型
|
地址
|
1.
国家管网集团压缩机组维检修中心, 河北, 廊坊, 065000
2.
中国石油大学(华东)新能源学院, 山东, 青岛, 266580
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
力学 |
基金
|
国家自然科学基金
;
企业委托课题
|
文献收藏号
|
CSCD:7744705
|
参考文献 共
28
共2页
|
1.
徐亮. 先进重型燃气轮机冷却技术现状及发展.
燃气轮机技术,2022,35(4):1-10
|
CSCD被引
4
次
|
|
|
|
2.
李敏. 舰用航改燃气轮机技术应用及发展思路.
航空动力,2022,4:25-28
|
CSCD被引
1
次
|
|
|
|
3.
姜磊.
航改燃气轮机燃烧室头部结构参数及燃烧特性研究,2020
|
CSCD被引
1
次
|
|
|
|
4.
Camporeale S M. Performance of a mixed gas-steam cycle power plant obtained upgrading an aero-derivative gas turbine.
Energy Conversion and Management,1998,39(16):1683-1692
|
CSCD被引
2
次
|
|
|
|
5.
石多奇. 单晶涡轮叶片典型任务循环蠕变分析.
航空动力学报,2024,39(6):1-9
|
CSCD被引
1
次
|
|
|
|
6.
田若洲. 航空涡轮盘多轴蠕变-疲劳寿命预测及对比研究.
力学季刊,2022,43(2):249-259
|
CSCD被引
7
次
|
|
|
|
7.
金震杰. T91/TP347H异种钢焊接接头过热工况下蠕变损伤模型研究.
压力容器,2021,38(9):18-26,33
|
CSCD被引
2
次
|
|
|
|
8.
杨思晟. 焊接结构拉伸强度及蠕变性能的小冲孔评价研究进展.
南京工业大学学报(自然科学版),2023,45(5):490-496
|
CSCD被引
1
次
|
|
|
|
9.
杨思晟. 基于压痕蠕变试验的TA2蠕变特性及变形规律分析.
南京工业大学学报(自然科学版),2023,45(4):419-424
|
CSCD被引
2
次
|
|
|
|
10.
Kachanov L M. Rupture time under creep conditions.
Izvestia Akademii Nauk USSR, Otdelenie Tekhnicheskich Nauk,1958,8:26-31
|
CSCD被引
1
次
|
|
|
|
11.
Rabotnov Y N.
Creep problems in structural members,1969
|
CSCD被引
14
次
|
|
|
|
12.
Liu Y. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis.
JSME International Journal Series A,1998,41(1):57-65
|
CSCD被引
12
次
|
|
|
|
13.
Hosseini E. Stress regime-dependent creep constitutive model considerations in finite element continuum damage mechanics.
International Journal of Damage Mechanics,2013,22(8):1186-1205
|
CSCD被引
4
次
|
|
|
|
14.
Yatomi M. Creep crack growth prediction using a damage based approach.
International Journal of Pressure Vessels and Piping,2003,80(7):573-583
|
CSCD被引
13
次
|
|
|
|
15.
Yatomi M. Creep crack growth simulations in 316H stainless steel.
Engineering Fracture Mechanics,2008,75(18):5140-5150
|
CSCD被引
8
次
|
|
|
|
16.
O'dowd N P. Creep crack initiation in a weld steel: effects of residual stress.
ASME 2005 Pressure Vessels and Piping Conference,2005:843-851
|
CSCD被引
1
次
|
|
|
|
17.
Yatomi M. Issues relating to numerical modelling of creep crack growth.
Engineering Fracture Mechanics,2010,77(15):3043-3052
|
CSCD被引
5
次
|
|
|
|
18.
Oh C S. Creep failure simulations of 316H at 550℃: Part I-A method and validation.
Engineering Fracture Mechanics,2011,78(17):2966-2977
|
CSCD被引
5
次
|
|
|
|
19.
Wen J F. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model.
Engineering Fracture Mechanics,2013,98:169-184
|
CSCD被引
12
次
|
|
|
|
20.
Wen J F. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction.
Engineering Fracture Mechanics,2014,123:197-210
|
CSCD被引
21
次
|
|
|
|
|