帮助 关于我们

返回检索结果

基于晶体塑性模型与内聚力单元模拟的接触疲劳亚表面原奥晶界裂纹萌生
Simulation of Subsurface Crack Initiation at Original Austenite Grain Boundaries Under Rolling Contact Fatigue Using Crystal Plasticity and Cohesive Elements

查看参考文献30篇

韩鑫琦 1,2   李淑欣 1,2 *   余丰 3 *   鲁思渊 1,2   金永生 4  
文摘 材料在接触疲劳载荷下亚表面裂纹的萌生是其主要损伤模式之一.采用晶体塑性模型耦合内聚力单元,模拟高强钢在滚动接触疲劳载荷下亚表面原奥氏体晶界处的疲劳裂纹萌生.基于内聚力模型的损伤起始准则和疲劳损伤演化规律,并利用USDFLD子程序将内聚力单元的疲劳损伤与晶体塑性模型结合,计算了滚动接触疲劳加载下的损伤随循环次数的累积.对Voronoi模型下的疲劳裂纹萌生进行了模拟,研究了晶体取向对裂纹萌生的影响.结果表明,裂纹的萌生受剪切应力主导,萌生位置在最大剪切应力范围内,模拟结果和试验观察一致.晶粒取向对裂纹萌生位置与萌生寿命有显著影响.
其他语种文摘 Subsurface crack initiation is one of the primary damage modes for materials under rolling contact fatigue.A crystal plasticity model combined with the cohesive zone elements is used to simulate the subsurface fatigue crack initiation at original austenite grain boundaries in a high strength steel.Based on the cohesive zone model of damage initiation criterion and fatigue damage evolution law,the damage accumulation with the number of cycles was calculated utilizing the crystal plasticity model in conjunction with the USDFLD subroutine.The fatigue crack initiation in the Voronoi model is simulated,and the effect of the crystal orientation on the crack initiation is investigated.The results indicate that the crack initiation is dominated by the shear stress,and the initiation position is within the range of maximum shear stress.The simulation results are consistent with the experimental observations.The grain orientation has a significant impact on the crack initiation location.
来源 力学季刊 ,2024,45(2):319-328 【扩展库】
DOI 10.15959/j.cnki.0254-0053.2024.02.003
关键词 晶体塑性有限元 ; Cohesive单元 ; 滚动接触疲劳 ; 亚表面裂纹萌生
地址

1. 宁波大学机械工程与力学学院, 浙江, 宁波, 315211  

2. 浙江省零件轧制成形技术研究重点实验室, 浙江省零件轧制成形技术研究重点实验室, 浙江, 宁波, 315211  

3. 宁波工程学院杭州湾汽车学院, 浙江, 宁波, 315336  

4. 宁波银球科技股份有限公司, 浙江, 宁波, 315207

语种 中文
文献类型 研究性论文
ISSN 0254-0053
学科 力学
基金 国家自然科学基金 ;  宁波市重大科技任务攻关项目 ;  慈溪市行业共性技术攻关项目 ;  宁波市重点研发计划
文献收藏号 CSCD:7744700

参考文献 共 30 共2页

1.  杨晓蔚. 滚动轴承产品技术发展的现状与方向. 轴承,2020,8:65-70 CSCD被引 1    
2.  Pant M. Continuous impact wear resistance of duplex surface-modified hot work tool steel H10. Wear,2005,1:259 CSCD被引 1    
3.  Hassilaa C J. Rolling contact fatigue crack propagation relative to anisotropies in additive manufactured inconel 625. Wear,2019,426/427:1837-1845 CSCD被引 1    
4.  Evans M H. An updated review: White etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Materials Science and Technology,2016,32(11):1133-1169 CSCD被引 1    
5.  罗敏. 非金属夹杂物对滚动接触疲劳裂纹萌生及扩展的影响. 轴承,2020,6:58-66 CSCD被引 2    
6.  Doenges B. Significance of crystallographic misorientation at phase boundaries for fatigue crack initiation in a duplex stainless steel during high and very high cycle fatigue loading. Materials Science & Engineering A,2014,589(1):146-152 CSCD被引 5    
7.  Kunzelmann B. Prediction of rolling contact fatigue crack propagation in bearing steels using experimental crack growth data and linear elastic fracture mechanics. International Journal of Fatigue,2023,168:107449 CSCD被引 1    
8.  Shen Y. Effect of retained austenite-compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. International Journal of Fatigue,2015,75(6):135-144 CSCD被引 2    
9.  Alley E S. Microstructure-sensitive modeling of rolling contact fatigue. International Journal of Fatigue,2010,32(5):841-850 CSCD被引 2    
10.  Park J. Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: Model development and validation of rolling contact fatigue behavior. International Journal of Plasticity,2021,143(1):103025 CSCD被引 1    
11.  Fourel L. Towards a grain-scale modeling of crack initiation in rolling contact fatigue-part 1: Shear stress considerations. Tribology International,2021,164:107224 CSCD被引 1    
12.  罗敏. 含夹杂物轴承钢中裂纹的萌生与扩展. 轴承,2022,2:11-16,22 CSCD被引 1    
13.  王姝予. CrMnFeCoNi高熵合金拉伸断裂的晶体塑性有限元模拟. 机械工程学报,2021,57(22):43-51 CSCD被引 1    
14.  Ghodrati M. Three-dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method. International Journal of Fatigue,2019,128:105208 CSCD被引 1    
15.  Su Y S. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue. International Journal of Fatigue,2017,105(12):160-168 CSCD被引 1    
16.  Peirce D. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica,1982,30(6):1087-1119 CSCD被引 4    
17.  Wang W. Effects of microstructure on rolling contact fatigue of a wind turbine gear based on crystal plasticity modeling. International Journal of Fatigue,2019,120:73-86 CSCD被引 1    
18.  Wang W. Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion. Tribology International,2019,136:182-195 CSCD被引 4    
19.  Gentieu T. A mean-field homogenisation scheme with CZM-based interfaces describing progressive inclusions debonding. Composite Structures,2019,229(12):111398.1-111398.8 CSCD被引 1    
20.  陈金华. 轴承钢滚动接触疲劳亚表面夹杂处损伤分析. 摩擦学学报,2024,44(3):267-279 CSCD被引 1    
引证文献 1

1 王滕 瓷砖胶粘结层剪切强度测试机理及方法改进研究 力学季刊,2024,45(3):762-770
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号