峨眉山大火成岩省钒钛磁铁矿矿床成因研究进展
Progresses of studies on the genesis of Fe-Ti oxide deposits in the Emeishan Large Igneous Province
查看参考文献107篇
文摘
|
钒钛磁铁矿矿床主要赋存于与大火成岩省相关的镁铁-超镁铁层状岩体中,虽然全球大火成岩省形成的镁铁-超镁铁层状岩体众多,但大规模的钒钛磁铁矿成矿作用并不常见。峨眉山大火成岩省内带的攀西地区赋存有数个超大型钒钛磁铁矿矿床,是全球最大的钒钛磁铁矿矿集区。钒钛磁铁矿大规模的成矿与母岩浆成分和磁铁矿的成因机制密切相关。此外,形成巨厚的钒钛磁铁矿矿层还需要高效的富集机制。本文系统总结了上述几个方面的研究进展,分析了导致钒钛磁铁矿大规模成矿的主要控制因素,指出钒钛磁铁矿矿床下一步研究值得关注的问题。 |
其他语种文摘
|
Fe-Ti oxide deposits are mainly hosted in mafic-ultramafic layered intrusions associated with Large Igneous Provinces(LIPs). Although there are many mafic-ultramafic layered intrusions formed in large igneous provinces around the world, the largescale Fe-Ti oxide mineralization occurred in those intrusions is not common. Several layered mafic-ultramafic intrusions in the Panzhihua-Xichang region, located in the inner zone of the Emeishan LIP(ELIP), hosted several world-class Fe-Ti oxide deposits, making the Panzhihua-Xichang area to be the largest Fe-Ti ore province in the world. The large-scale mineralization of Fe-Ti oxides is closely related to the composition of parent magma and the enrichment mechanism of Fe-Ti oxides. Furthermore, a very effective enrichment mechanism is needed to explain how such thick Fe-Ti oxide layers were formed in these intrusions. In this paper, we have systematically reviewed recent advances of researches in the aforementioned areas, have analyzed the critical factors controlling the large-scale mineralization of Fe-Ti oxides, and have pointed out some remaining issues that should be addressed in future researches. |
来源
|
矿物岩石地球化学通报
,2024,43(2):292-305 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2023.42.101
|
关键词
|
峨眉山大火成岩省
;
钒钛磁铁矿矿床
;
关键控制因素
;
母岩浆成分
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7741813
|
参考文献 共
107
共6页
|
1.
Ashwal L D. Magmatic stratigraphy in the Bushveld Northern Lobe: Continuous geophysical and mineralogical data from the 2950 m Bellevue drillcore.
South African Journal of Geology,2005,108(2):199-232
|
CSCD被引
4
次
|
|
|
|
2.
Bai Z J. Composition of the chilled marginal rocks of the Panzhihua layered intrusion,Emeishan large igneous province,SW China: Implications for parental magma compositions, sulfide saturation history and Fe-Ti oxide mineralization.
Journal of Petrology,2019,60(3):619-648
|
CSCD被引
7
次
|
|
|
|
3.
Bai Z J. World-class Fe-Ti-V oxide deposits formed in feeder conduits by removing cotectic silicates.
Economic Geology,2021,116(3):681-691
|
CSCD被引
4
次
|
|
|
|
4.
Bai Z J. Association of cumulus apatite with compositionally unusual olivine and plagioclase in the Taihe Fe-Ti oxide ore-bearing layered mafic-ultramafic intrusion: Petrogenetic significance and implications for ore genesis.
American Mineralogist,2016,101(10):2168-2175
|
CSCD被引
4
次
|
|
|
|
5.
Bai Z J. Contrasting parental magma compositions for the hongge and Panzhihua magmatic Fe-Ti-V oxide deposits,Emeishan large igneous province,SW China.
Economic Geology,2014,109(6):1763-1785
|
CSCD被引
13
次
|
|
|
|
6.
Bai Z J. Whole-rock and mineral composition constraints on the genesis of the giant hongge Fe-Ti-V oxide deposit in the Emeishan large igneous province,southwest China.
Economic Geology,2012,107(3):507-524
|
CSCD被引
32
次
|
|
|
|
7.
Bai Z J. The genesis of the newly discovered giant Wuben magmatic Fe-Ti oxide deposit in the Emeishan Large Igneous Province: A product of the late-stage redistribution and sorting of crystal slurries.
Mineralium Deposita,2019,54(1):31-46
|
CSCD被引
1
次
|
|
|
|
8.
Bai Z J. Mantle plume-subducted oceanic slab interaction contributes to geochemical heterogeneity of the Emeishan large igneous province.
Chemical Geology,2022,611:121117
|
CSCD被引
2
次
|
|
|
|
9.
Barnes S J. Composition of the marginal rocks and sills of the rustenburg layered suite,bushveld complex,South Africa: Implications for the formation of the platinum-group element deposits.
Economic Geology,2010,105(8):1491-1511
|
CSCD被引
4
次
|
|
|
|
10.
Bateman A M. The formation of late magmatic oxide ores.
Economic Geology,1951,46(4):404-426
|
CSCD被引
4
次
|
|
|
|
11.
Bedard J H. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks,and the concentration of trace elements in the coexisting liquids.
Chemical Geology,1994,118(1/4):143-153
|
CSCD被引
9
次
|
|
|
|
12.
Botcharnikov R E. Phase relations and liquid lines of descent in hydrous ferrobasalt-Implications for the skaergaard intrusion and Columbia River flood basalts.
Journal of Petrology,2008,49(9):1687-1727
|
CSCD被引
22
次
|
|
|
|
13.
Cao Y H. Iron isotope systematics of the Panzhihua mafic layered intrusion associated with giant Fe-Ti oxide deposit in the Emeishan large igneous province,SW China.
Journal of Geophysical Research (Solid Earth),2019,124(1):358-375
|
CSCD被引
9
次
|
|
|
|
14.
Cao Y H. Contrasting oxidation states of low-Ti and high-Ti magmas control Ni-Cu sulfide and Fe-Ti oxide mineralization in Emeishan Large Igneous Province.
Geoscience Frontiers,2022,13(6):101434
|
CSCD被引
3
次
|
|
|
|
15.
Charlier B. Polybaric fractional crystallization of high-alumina basalt parental magmas in the egersund-ogna massif-type anorthosite (rogaland,SW Norway) constrained by plagioclase and high-alumina orthopyroxene megacrysts.
Journal of Petrology,2010,51(12):2515-2546
|
CSCD被引
4
次
|
|
|
|
16.
Charlier B. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province,SW Norway) and the formation of Fe-Ti ores in massif-type anorthosites.
Chemical Geology,2006,234(3/4):264-290
|
CSCD被引
20
次
|
|
|
|
17.
Charlier B. Cumulate origin and polybaric crystallization of Fe-Ti oxide ores in the suwalki anorthosite,northeastern Poland.
Economic Geology,2009,104(2):205-221
|
CSCD被引
6
次
|
|
|
|
18.
Chen L M. Revision 2 1 2 Controls on trace element partitioning among cocrystallizing 3 minerals: Evidence from the Panzhihua layered intrusion, SW China.
American Mineralogist,2016,102(5):1006-1020
|
CSCD被引
1
次
|
|
|
|
19.
Chen L M. Iron isotope fractionation during crystallization and sub-solidus re-equilibration: Constraints from the Baima mafic layered intrusion,SW China.
Chemical Geology,2014,380:97-109
|
CSCD被引
13
次
|
|
|
|
20.
陈列锰. 峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因.
岩石学报,2014,30(5):1415-1431
|
CSCD被引
3
次
|
|
|
|
|