帮助 关于我们

返回检索结果

Incidence Coloring of Outer-1-planar Graphs

查看参考文献18篇

文摘 A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial 3-tree. In this paper, we conjecture that every planar graph G has a proper incidence (Δ(G) + 2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we prove that every outer-1-planar graph G has an incidence (Δ(G)+3, 2)-coloring, and every outer-1-planar graph G with maximum degree at least 8 or with girth at least 4 has an incidence (Δ(G) + 2, 2)-coloring.
来源 Acta Mathematicae Applicatae Sinica-English Series ,2024,40(3):840-848 【核心库】
DOI 10.1007/s10255-024-1126-3
关键词 incidence coloring ; outer-1-planar graph ; planar graph
地址

School of Mathematics and Statistics,Xidian University, Xi'an, 710071

语种 英文
文献类型 研究性论文
ISSN 0168-9673
学科 数学
基金 Supported in part by the Natural Science Basic Research Program of Shaanxi ;  the Fundamental Research Funds for the Central Universities ;  国家自然科学基金
文献收藏号 CSCD:7727602

参考文献 共 18 共1页

1.  Algor I. The star arboricity of graphs. Discrete Math,1989,75:11-22 CSCD被引 9    
2.  Auer C. Recognizing outer 1-planar graphs in linear time. Graph Grawing, GD 2013, Lecture Notes in Comput. Sci,8242,2013:107-118 CSCD被引 1    
3.  Auer C. Outer-1-planar graphs. Algorithmica,2016,74:1293-1320 CSCD被引 4    
4.  Bonamy M. 2-distance coloring of sparse graphs. J. Graph Theory,2014,77(3):190-218 CSCD被引 2    
5.  Bondy J A. Graph Theory,2008 CSCD被引 195    
6.  Brualdi R A. Incidence and strong edge colorings of graphs. Discrete Math,1993,122:51-58 CSCD被引 16    
7.  Guiduli B. On incidence coloring and star arboricity of graphs. Discrete Math,1997,163:275-278 CSCD被引 7    
8.  Hosseini Dolama M. On the maximum average degree and the incidence chromatic number of a graph. Discrete Math. Theoret. Comput. Sci,2005,7:203-216 CSCD被引 1    
9.  Hosseini Dolama M. Incidence coloring of k-degenerated graphs. Discrete Math,2004,283(1/3):121-128 CSCD被引 1    
10.  Kardos F. Incidence coloring-Cold cases. Discuss. Math. Graph Theory,2020,40:345-354 CSCD被引 1    
11.  Li Y. The structure and the list 3-dynamic coloring of outer-1-planar graphs. Discrete Math. Theoret. Comput. Sci,2021,23(3):#4 CSCD被引 1    
12.  Maydanskiy M. The incidence coloring conjecture for graphs of maximum degree three. Discrete Math,2005,292:131-141 CSCD被引 5    
13.  Shiu W C. Invalid proofs on incidence coloring. Discrete Math,2008,308(24):6575-6580 CSCD被引 2    
14.  Sopena E. www.labri.fr/perso/sopena/TheIncidenceColoringPage CSCD被引 1    
15.  Wang W F. Labeling planar graphs with conditions on girth and distance two. SIAM J. Discrete Math,2003,17(2):264-275 CSCD被引 14    
16.  Yang D. Fractional incidence coloring and star arboricity of graphs. Ars Combin,2012,105:213-224 CSCD被引 1    
17.  Zhang X. List total coloring of pseudo-outerplanar graphs. Discrete Math,2013,313:2297-2306 CSCD被引 6    
18.  Zhang X. Edge covering pseudo-outerplanar graphs with forests. Discrete Math,2012,312:2788-2799 CSCD被引 7    
引证文献 1

1 Qi Mengke Conflict-free Incidence Coloring of Outer-1-planar Graphs Acta Mathematicae Applicatae Sinica-English Series,2024,40(4):929-942
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号