高温活化磷尾矿钝化矿区污染土壤中阳离子态重金属研究
Immobilization of Heavy Metal Cations in Contaminated Mining Soils by High Temperature Activated Phosphate Tailings
查看参考文献45篇
文摘
|
矿冶场地土壤重金属污染是重要的环境问题,亟需研发低成本的高效修复技术。化学钝化是常用修复技术,但现有钝化材料仍存在效率较低、成本较高等问题。本研究采用900 ℃高温处理制备活化磷尾矿材料,研究不同处理下材料对土壤重金属的钝化效果。结果表明:高温处理将磷尾矿中的白云石分解为方解石、MgO和CaO,活化材料可显著提升土壤pH,降低土壤可交换态重金属含量;添加0.8%的高温活化磷尾矿钝化30天后,土壤可交换态Zn、Cd和Pb含量分别降低97%、46%和95%。重金属由可交换态向碳酸盐结合态转化,部分Cd转化为铁锰氧化物结合态。主要钝化机理为MgO与水反应生成氢氧化物提升土壤pH,促使重金属形成氧化物、氢氧化物沉淀,同时增加铁锰氧化物对Cd的吸附固定。研究结果可为矿区土壤原位钝化和磷尾矿资源化利用提供参考。 |
其他语种文摘
|
Heavy metal contamination of soil at mining and metallurgical sites is an important environmental issue. Thus, there is an urgent need to develop cost effective remediation technologies. To date, chemical immobilization is one of the most commonly used techniques. However, most immobilization materials still suffer from low efficiencies and high costs. Here, activated phosphorus tailing materials treated at 900 ℃ were utilized to investigate their potential to support heavy metal immobilization in soils. The results showed that high temperature treatment decomposed dolomite in phosphate tailing to calcite, MgO and CaO. With the addition of activated phosphate tailing can elevate soil pH and decrease the concentrations of exchangeable heavy metals in soils. Amending 0.8% of activated phosphate tailings for 30 day reduced the concentrations of exchangeable Zn, Cd and Pb in soils by 97%, 46% and 95%, respectively. Furthermore, the amendment of activated phosphate tailings caused a redistribution of heavy metals in soil fractions. The exchangeable heavy metals could be transferred into carbonate-associated fraction, and part of Cd was partitioned into Fe-Mn oxides bound fraction. The primary mechanism of immobilization was that the hydration of MgO substantially elevated soil pH, consequently leading to precipitation of heavy metal (hydr)oxides, and at the same time, increased adsorption of Cd to Fe-Mn oxides. The results of this study delivered a potential guideline for in situ soil remediation and reuse of phosphate tailings. |
来源
|
地球与环境
,2024,52(2):166-175 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2023.51.018
|
关键词
|
土壤污染
;
化学钝化
;
重金属
;
磷尾矿
;
矿山修复
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州川恒化工股份有限公司, 贵州, 福泉, 550599
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
环境污染及其防治;行业污染、废物处理与综合利用 |
基金
|
国家重点研发计划
;
贵州省科学技术厅国家重点研发计划后补助项目
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:7726209
|
参考文献 共
45
共3页
|
1.
D'Emilio M. Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade.
Environmental Monitoring and Assessment,2013,185(7):5951-5964
|
CSCD被引
4
次
|
|
|
|
2.
Delplace G. Accumulation of heavy metals in phytoliths from reeds growing on mining environments in Southern Europe.
Science of the Total Environment,2020,712:135595
|
CSCD被引
1
次
|
|
|
|
3.
顾会. 贵州省典型铅锌矿区土壤重金属污染特征及来源解析.
地球与环境,2022,50(4):506-515
|
CSCD被引
10
次
|
|
|
|
4.
孙大丽. 贵州龙里煤矿开采的独木河流域稻田重金属地球化学基线厘定.
地球与环境,2021,49(6):707-716
|
CSCD被引
2
次
|
|
|
|
5.
赵鹏. 电动修复技术去除土壤重金属污染研究进展.
地球与环境,2022,50(5):776-786
|
CSCD被引
4
次
|
|
|
|
6.
Diarra I. Application of phytoremediation for heavy metal contaminated sites in the South Pacific: strategies, current challenges and future prospects.
Applied Spectroscopy Reviews,2022,57(6):490-512
|
CSCD被引
2
次
|
|
|
|
7.
Chen W Y. Cost-effectiveness analysis for soil heavy metal contamination treatments.
Water, Air, & Soil Pollution,2018,229(4):126
|
CSCD被引
4
次
|
|
|
|
8.
Xu D M. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: available stabilizing materials and associated evaluation methods-A critical review.
Journal of Cleaner Production,2021,321(1):128730
|
CSCD被引
16
次
|
|
|
|
9.
Venalainen S H. Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.
Science of the Total Environment,2011,409(21):4628-4634
|
CSCD被引
2
次
|
|
|
|
10.
Li M. Combined application of rice straw and fungus penicillium chrysogenum to remediate heavy-metal-contaminated soil.
Soil and Sediment Contamination: An International Journal,2014,23(3):328-338
|
CSCD被引
5
次
|
|
|
|
11.
王伟. 沼液秸秆联用对滨海围垦田土壤重金属迁移及形态变化的影响.
环境科学,2021,42(4):1979-1988
|
CSCD被引
8
次
|
|
|
|
12.
Zhou R. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment.
International Biodeterioration & Biodegradation,2017,118:73-81
|
CSCD被引
18
次
|
|
|
|
13.
Wang K F. Effect of a low-cost and highly efficient passivator synthesized by alkali-fused fly ash and swine manure on the leachability of heavy metals in a multi-metal contaminated soil.
Chemosphere,2021,279:130558
|
CSCD被引
3
次
|
|
|
|
14.
黄洋. 磷尾矿材料化综合利用途径研究进展.
材料导报,2021,35(S2):279-284,293
|
CSCD被引
7
次
|
|
|
|
15.
Sadiqul Islam G M. Effect of phosphogypsum on the properties of Portland cement.
Procedia Engineering,2017,171:744-751
|
CSCD被引
8
次
|
|
|
|
16.
Araya N. Towards mine tailings valorization: recovery of critical materials from Chilean mine tailings.
Journal of Cleaner Production,2020,263:121555
|
CSCD被引
3
次
|
|
|
|
17.
Fang Y Y. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil.
Environmental Science and Pollution Research,2012,19(5):1659-1667
|
CSCD被引
17
次
|
|
|
|
18.
Xing J F. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment.
SpringerPlus,2016,5(1):1182
|
CSCD被引
4
次
|
|
|
|
19.
陶祥运. 白云石和硫酸亚铁复配对城市污泥中重金属形态分布及生物有效性的影响.
环境工程学报,2018,12(2):654-662
|
CSCD被引
4
次
|
|
|
|
20.
Xia Y F. Zinc isotope revealing zinc's sources and transport processes in karst region.
Science of the Total Environment,2020,724:138191
|
CSCD被引
9
次
|
|
|
|
|