帮助 关于我们

返回检索结果

基于机器学习的西南岩溶泉流量模拟研究
Modelling karst spring flow in Southwest China based on machine learning

查看参考文献28篇

马从文 1   张志才 1 *   陈喜 2   程勤波 1   彭韬 3,4   张林 3,4  
文摘 岩溶泉对西南岩溶区生态系统稳定和经济社会发展具有重要意义。受岩溶区独特水文地质结构与多重水流过程控制,岩溶泉流量具有复杂的动态变化特征,机器学习模型为其模拟和预测提供了有效手段。然而,岩溶泉域降雨-泉流量过程及其时空变异特征对机器学习模型结构与模拟精度的影响仍不明晰。本文选取西南典型岩溶泉,基于长短期记忆网络(LSTM)建立岩溶泉流量模拟模型,利用泉域实测逐小时降雨与泉流量序列进行模型训练与验证。在此基础上,分析了不同降雨-泉流量过程对岩溶泉流量模拟精度的影响,以及岩溶水文地质结构对降雨-泉流量响应滞时的控制作用。研究结果显示,山坡岩溶泉与流域出口岩溶泉训练期纳什效率系数(NSE)分别为0.942与0.951,验证期分别为0.831与0.834。对于山坡岩溶泉与流域出口岩溶泉,利用全年实测序列训练的模型预测雨季泉流量存在较大偏差, NSE分别为0.793与0.798,而利用雨季实测序列训练的模型预测雨季泉流量,精度显著提升,NSE分别为0.956与0.962,且此差异在暴雨频繁的5、6、7月尤为显著。受浅薄土壤与表层岩溶带分布影响,山坡岩溶泉LSTM模型时序步长显著小于流域出口岩溶泉。
其他语种文摘 Karst springs are important for ecosystem and economic development in Southwest China. Controlled by the unique karst hydrogeological structure and multiple water flow processes, the karst spring flow has complex dynamic characteristics, thus posting a great challenge to simulate and predict the dynamic process of karst spring flow which can reflect the characteristics of rainfall -spring flow in the karst basin. As a data-driven model, the machine learning model omits the necessity of considering complex physical processes, showing its significant advantages in the simulation and prediction of nonlinear system variables. Therefore, it provides an effective approach for simulation and prediction of karst spring discharge. However, the influence of the flow processes and hydrogeological conditions on the structure and simulation accuracy of machine learning model is still unclear. Among the machine learning algorithms, LSTM, as the most popular algorithm in recent years, is widely used in the simulation and prediction of various long-time series data. LSTM adds a cell state similar to "conveyor belt" in the hidden layer, and the cell state is adjusted by forgetting gate, input gate and output gate. This structure can effectively solve the long-term transportation and memory problems of time series data, and is more suitable for runoff simulation and prediction than the traditional neural network algorithm. In this study, for the processes of rainfall-spring flow in karst areas, two typical karst springs (hillside karst spring and outlet karst spring) representing different geomorphic units in Southwest China are selected. Through hyper parameter optimization, a double hidden layer and double input LSTM model are adopted to build a machine learning model of typical karst spring flow. The measured meteorological and hydrological data from 0:00 on January 1, 2017 to 24:00 on December 31, 2019 are used. 2017 -2018 is the training period and 2019 is the validation period. The model has been trained and verified. Based on the simulation results, the influence of different rainfall -spring flow forming processes on the simulation accuracy of karst spring flow and the influence of karst hydrogeological structure on the response time lag of rainfall-spring flow are compared and analyzed. The results show that the Nash efficiency coefficients (NSE) for the hillside karst spring and the outlet karst spring were 0.942 and 0.951 in the training period, and 0.831 and 0.834 in the validation period, respectively. The model can well simulate the whole dynamic process of karst spring discharge in different geomorphic units, but there are significant errors in the simulation of flood peak in the rainy season. The formation process and variation of rainfall -spring discharge in the karst spring area have an important influence on the simulation accuracy of machine learning model. Compared with the model trained by the annual measured sequence, the model trained by the measured sequence in the rainy season can significantly improve the simulation accuracy of the karst spring flow in this season. The NSE of the hillside karst spring increases from 0.793 to 0.956, and the outlet karst spring increases from 0.798 to 0.962. The difference is most significant in May, June and July when rainstorms and flood are concentrated. Under the same precision of simulating spring flow, the time step of LSTM model of hillside karst spring is obviously smaller than that of outlet karst spring. When the simulation precision of the two types of spring flow is the highest, the time step of the model is 15 h and 28 h, respectively. This result can be combined with the actual geological structure. In karst areas, the development degree of the epikarst zone is closely related to the terrain, and its thickness usually decreases with the increase of the slope.
来源 中国岩溶 ,2024,43(1):48-56 【扩展库】
DOI 10.11932/karst2023y013
关键词 机器学习 ; LSTM ; 岩溶泉流量 ; 响应滞时 ; 岩溶降雨-泉流量过程
地址

1. 河海大学水文水资源学院, 江苏, 南京, 210098  

2. 天津大学地球系统科学学院, 天津, 300072  

3. 中国科学院地球化学研究所, 贵州, 贵阳, 550081  

4. 中国科学院普定喀斯特生态系统观测研究站, 中国科学院普定喀斯特生态系统观测研究站, 贵州, 普定, 562100

语种 中文
文献类型 研究性论文
ISSN 1001-4810
学科 地质学
基金 国家自然科学基金 ;  面上项目
文献收藏号 CSCD:7723572

参考文献 共 28 共2页

1.  Hartmann A. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics,2014,52(3):218-242 CSCD被引 43    
2.  李潇. 西南典型紧窄褶皱小尺度浅层岩溶水系统特征及隧道涌水分析. 中国岩溶,2020,39(3):375-383 CSCD被引 6    
3.  Zhang Zhicai. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrological Processes,2017,31(19):3421-3436 CSCD被引 6    
4.  蒙海花. 基于落水洞的岩溶半分布式水文模型的构建及其应用. 地理科学,2009,29(4):550-554 CSCD被引 6    
5.  王宇. 西南岩溶地区岩溶水系统分类、特征及勘查评价要点. 中国岩溶,2002,21(2):114-119 CSCD被引 31    
6.  王宇. 岩溶高原地下水径流系统垂向分带. 中国岩溶,2018,37(1):1-8 CSCD被引 33    
7.  王在高. 浅析喀斯特流域水文地貌过程-响应系统. 贵州师范大学学报(自然科学版),2002,20(1):36-39 CSCD被引 4    
8.  Hu Caihong. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water,2018,10(11):1543 CSCD被引 14    
9.  Goodfellow I. Deep learning,2016 CSCD被引 691    
10.  Kratzert F. Rainfall-runoff modelling using Long Short-Term Memory(LSTM) networks. Hydrology and Earth System Sciences,2018,22(11):6005-6022 CSCD被引 58    
11.  党池恒. 长短期记忆神经网络在季节性融雪流域降水-径流模拟中的应用. 华北水利水电大学学报(自然科学版),2020,41(5):10-18,33 CSCD被引 6    
12.  Bengio Y. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks,1994,5(2):157-166 CSCD被引 334    
13.  Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,1998,6(2):107-116 CSCD被引 67    
14.  Hochreiter S. Long short-term memory. Neural Computation,1997,9(8):1735-1780 CSCD被引 3767    
15.  Gao Shuai. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. Journal of Hydrology,2020,589:125188 CSCD被引 26    
16.  Zhang Di. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. Journal of Hydrology,2018,565:720-736 CSCD被引 18    
17.  Tennant C. The utility of information flow in formulating discharge forecast models: A case study from an arid snow-dominated catchment. Water Resources Research,2020,56(8):e2019WR024908 CSCD被引 3    
18.  顾逸. 基于长短期记忆循环神经网络及其结构约减变体的中长期径流预报研究,2018 CSCD被引 7    
19.  Cho K. Improving streamflow prediction in the WRFHydro model with LSTM networks. Journal of Hydrology,2022,605:127297 CSCD被引 4    
20.  Lu Dan. Streamflow simulation in data-scarce basins using bayesian and physics-Informed machine learning models. Journal of Hydrometeorology,2021,22(6):1421-1438 CSCD被引 3    
引证文献 1

1 徐子凡 表层岩溶带土岩结构对降雨-径流响应特征的影响 中国岩溶,2024,43(4):863-875
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号