帮助 关于我们

返回检索结果

热处理对超高速激光熔覆制备TiC/IN625涂层组织与耐腐蚀性的影响
Effect of heat treatment on microstructure and corrosion resistance of TiC/IN625 coating by extreme-high-speed laser cladding

查看参考文献16篇

赵海生 1,2 *   张峰 2   葛通 3   庞义斌 2   周子正 2  
文摘 采用EHLA技术在45钢基材上制备TiC/IN625纳米复合涂层。分析不同热处理温度(800,1000 ℃和1200 ℃)对TiC/IN625涂层微观组织、表面形貌、残余应力和耐腐蚀性的影响。结果表明:随着热处理温度的提升,涂层偏析现象得到缓解。较HT0和HT800涂层,HT1000涂层中的Ti元素分布更加均匀。HT0涂层中的部分Laves相在HT1000涂层中开始溶解,释放出Nb元素,与C元素和Ti元素重新结合生成MC(M=Nb,Ti)碳化物。HT1200涂层表面微观组织中大尺寸的碳化物溶解,Ti元素和Ni等其他元素分布更加均匀,并向枝晶间区域扩散。HT0涂层表面残余应力主要表现为残余拉应力,其最大值为362 MPa。电化学腐蚀实验表明,开路电位由HT0涂层的-0.139 V提高到HT1200涂层的 -0.132 V。HT800,HT1000,HT1200涂层的电荷转移电阻(Rct)比HT0涂层更大,相较于HT0涂层的4.785×10~5 Ω·cm~2分别提高了46.2%,31.2%和64.3%。
其他语种文摘 The TiC/IN625 coatings were prepared on 45 steel substrates by using extreme-high-speed laser cladding(EHLA) technology. The effect of different heat treatment temperatures(800, 1000 ℃ and 1200 ℃) on the microstructure, surface morphology, residual stress and corrosion resistance of TiC/IN625 coatings was analyzed. The results show that the coating segregation phenomenon is alleviated with the increase of heat treatment temperature. The distribution of Ti elements in the HT1000 coating is more uniform than that in the HT0 and HT800 coatings. The part Laves phase in the HT0 coatings starts to dissolve in the HT1000 coatings, releasing Nb elements that recombine with C and Ti elements to generate MC (M=Nb, Ti) carbides. The large-sized carbides in the microstructure of HT1200 coatings surface dissolve. The other elements, such as Ti and Ni, more homogeneously distribute and diffuse into the interdendritic region. The residual stress on the HT0 coatings surface is mostly expressed as residual tensile stress, with a maximum value of 362 MPa. The electrochemical corrosion tests indicate that the opencircuit potential is increased from -0.139 V for the HT0 coatings to -0.132 V for the HT1200 coatings. The charge transfer resistance(Rct) of HT800,HT1000 and HT1200 coatings is also larger than that of the HT0 coatings, with an increase of 46.2%, 31.2% and 64.3% compared to the HT0 coating’s 4.785×10~5 Ω·cm~2, respectively.
来源 材料工程 ,2024,52(5):93-102 【核心库】
DOI 10.11868/j.issn.1001-4381.2023.000073
关键词 超高速激光熔覆 ; TiC/IN625涂层 ; 残余应力 ; 耐腐蚀性
地址

1. 中国航发北京航空材料研究院焊接与塑性成形研究所, 北京, 100095  

2. 航发优材(镇江)增材制造有限公司技术部, 江苏, 镇江, 212132  

3. 江苏大学机械工程学院, 江苏, 镇江, 212013

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 金属学与金属工艺
文献收藏号 CSCD:7723554

参考文献 共 16 共1页

1.  Yunus K M. Comparative study of chemical composition of IN625 through OES and EDX techniques. Materials Today:Proceedings,2022,52:1744-1748 CSCD被引 1    
2.  Sharifitabar M. High-temperature oxidation performance of Inconel 625 superalloy fabricated by wire arc additive manufacturing. Corrosion Science,2022,197:110087 CSCD被引 3    
3.  葛通. 超高速激光熔覆TiC/Inconel 625复合涂层的组织和性能提升研究. 激光与光电子学进展,2023,60(5):149-156 CSCD被引 2    
4.  Bi G. Microstructure and mechanical properties of nano-TiC reinforced Inconel 625 deposited using LAAM. Physics Procedia,2013,41:828-834 CSCD被引 4    
5.  Chen L. Improvement of high temperature oxidation resistance of additively manufactured TiC/Inconel 625 nanocomposites by laser shock peening treatment. Additive Manufacturing,2020,34:101276 CSCD被引 8    
6.  Schopphoven T. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying. Journal of Laser Applications,2016,28(2):022501 CSCD被引 37    
7.  吴影. 超高速激光熔覆技术研究现状及其发展方向. 电焊机,2020,50(3):1-10 CSCD被引 13    
8.  Yuan W. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surface and Coatings Technology,2020,405:126582 CSCD被引 34    
9.  李俐群. 超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性的对比. 中国激光,2019,46(10):174-183 CSCD被引 15    
10.  Yang J X. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding. Optics & Laser Technology,2021,144:107431 CSCD被引 10    
11.  Shrivastava V. Synergistic effect of heat treatment and reinforcement content on the microstructure and corrosion behavior of Al-7075 alloy based nanocomposites. Journal of Alloys and Compounds,2021,857:157590 CSCD被引 2    
12.  Zhao Y. Temperature and stress fields of multi-track laser cladding. Transactions of Nonferrous Metals Society of China,2009,19:495-501 CSCD被引 11    
13.  尹宏飞. 一种新型镍铁基变形高温合金再结晶温度的研究. 热加工工艺,2015,44(20):52-54 CSCD被引 2    
14.  Zietala M. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Materials Science and Engineering: A,2016,677:1-10 CSCD被引 33    
15.  Cao M. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment. Journal of Materials Science & Technology,2019,35(4):651-659 CSCD被引 16    
16.  Li L. Effect of heat treatment on the corrosion resistance of selective laser melted Ti_6Al_4V_3Cu alloy. Journal of Materials Research and Technology,2021,12:904-915 CSCD被引 3    
引证文献 1

1 刘军 真空热处理超音速火焰喷涂制备Ni基WC涂层的结构与耐磨性 金属热处理,2025,50(3):284-290
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号