热处理对超高速激光熔覆制备TiC/IN625涂层组织与耐腐蚀性的影响
Effect of heat treatment on microstructure and corrosion resistance of TiC/IN625 coating by extreme-high-speed laser cladding
查看参考文献16篇
文摘
|
采用EHLA技术在45钢基材上制备TiC/IN625纳米复合涂层。分析不同热处理温度(800,1000 ℃和1200 ℃)对TiC/IN625涂层微观组织、表面形貌、残余应力和耐腐蚀性的影响。结果表明:随着热处理温度的提升,涂层偏析现象得到缓解。较HT0和HT800涂层,HT1000涂层中的Ti元素分布更加均匀。HT0涂层中的部分Laves相在HT1000涂层中开始溶解,释放出Nb元素,与C元素和Ti元素重新结合生成MC(M=Nb,Ti)碳化物。HT1200涂层表面微观组织中大尺寸的碳化物溶解,Ti元素和Ni等其他元素分布更加均匀,并向枝晶间区域扩散。HT0涂层表面残余应力主要表现为残余拉应力,其最大值为362 MPa。电化学腐蚀实验表明,开路电位由HT0涂层的-0.139 V提高到HT1200涂层的 -0.132 V。HT800,HT1000,HT1200涂层的电荷转移电阻(Rct)比HT0涂层更大,相较于HT0涂层的4.785×10~5 Ω·cm~2分别提高了46.2%,31.2%和64.3%。 |
其他语种文摘
|
The TiC/IN625 coatings were prepared on 45 steel substrates by using extreme-high-speed laser cladding(EHLA) technology. The effect of different heat treatment temperatures(800, 1000 ℃ and 1200 ℃) on the microstructure, surface morphology, residual stress and corrosion resistance of TiC/IN625 coatings was analyzed. The results show that the coating segregation phenomenon is alleviated with the increase of heat treatment temperature. The distribution of Ti elements in the HT1000 coating is more uniform than that in the HT0 and HT800 coatings. The part Laves phase in the HT0 coatings starts to dissolve in the HT1000 coatings, releasing Nb elements that recombine with C and Ti elements to generate MC (M=Nb, Ti) carbides. The large-sized carbides in the microstructure of HT1200 coatings surface dissolve. The other elements, such as Ti and Ni, more homogeneously distribute and diffuse into the interdendritic region. The residual stress on the HT0 coatings surface is mostly expressed as residual tensile stress, with a maximum value of 362 MPa. The electrochemical corrosion tests indicate that the opencircuit potential is increased from -0.139 V for the HT0 coatings to -0.132 V for the HT1200 coatings. The charge transfer resistance(Rct) of HT800,HT1000 and HT1200 coatings is also larger than that of the HT0 coatings, with an increase of 46.2%, 31.2% and 64.3% compared to the HT0 coating’s 4.785×10~5 Ω·cm~2, respectively. |
来源
|
材料工程
,2024,52(5):93-102 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000073
|
关键词
|
超高速激光熔覆
;
TiC/IN625涂层
;
残余应力
;
耐腐蚀性
|
地址
|
1.
中国航发北京航空材料研究院焊接与塑性成形研究所, 北京, 100095
2.
航发优材(镇江)增材制造有限公司技术部, 江苏, 镇江, 212132
3.
江苏大学机械工程学院, 江苏, 镇江, 212013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7723554
|
参考文献 共
16
共1页
|
1.
Yunus K M. Comparative study of chemical composition of IN625 through OES and EDX techniques.
Materials Today:Proceedings,2022,52:1744-1748
|
CSCD被引
1
次
|
|
|
|
2.
Sharifitabar M. High-temperature oxidation performance of Inconel 625 superalloy fabricated by wire arc additive manufacturing.
Corrosion Science,2022,197:110087
|
CSCD被引
3
次
|
|
|
|
3.
葛通. 超高速激光熔覆TiC/Inconel 625复合涂层的组织和性能提升研究.
激光与光电子学进展,2023,60(5):149-156
|
CSCD被引
2
次
|
|
|
|
4.
Bi G. Microstructure and mechanical properties of nano-TiC reinforced Inconel 625 deposited using LAAM.
Physics Procedia,2013,41:828-834
|
CSCD被引
4
次
|
|
|
|
5.
Chen L. Improvement of high temperature oxidation resistance of additively manufactured TiC/Inconel 625 nanocomposites by laser shock peening treatment.
Additive Manufacturing,2020,34:101276
|
CSCD被引
8
次
|
|
|
|
6.
Schopphoven T. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying.
Journal of Laser Applications,2016,28(2):022501
|
CSCD被引
37
次
|
|
|
|
7.
吴影. 超高速激光熔覆技术研究现状及其发展方向.
电焊机,2020,50(3):1-10
|
CSCD被引
13
次
|
|
|
|
8.
Yuan W. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings.
Surface and Coatings Technology,2020,405:126582
|
CSCD被引
34
次
|
|
|
|
9.
李俐群. 超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性的对比.
中国激光,2019,46(10):174-183
|
CSCD被引
15
次
|
|
|
|
10.
Yang J X. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding.
Optics & Laser Technology,2021,144:107431
|
CSCD被引
10
次
|
|
|
|
11.
Shrivastava V. Synergistic effect of heat treatment and reinforcement content on the microstructure and corrosion behavior of Al-7075 alloy based nanocomposites.
Journal of Alloys and Compounds,2021,857:157590
|
CSCD被引
2
次
|
|
|
|
12.
Zhao Y. Temperature and stress fields of multi-track laser cladding.
Transactions of Nonferrous Metals Society of China,2009,19:495-501
|
CSCD被引
11
次
|
|
|
|
13.
尹宏飞. 一种新型镍铁基变形高温合金再结晶温度的研究.
热加工工艺,2015,44(20):52-54
|
CSCD被引
2
次
|
|
|
|
14.
Zietala M. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping.
Materials Science and Engineering: A,2016,677:1-10
|
CSCD被引
33
次
|
|
|
|
15.
Cao M. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment.
Journal of Materials Science & Technology,2019,35(4):651-659
|
CSCD被引
16
次
|
|
|
|
16.
Li L. Effect of heat treatment on the corrosion resistance of selective laser melted Ti_6Al_4V_3Cu alloy.
Journal of Materials Research and Technology,2021,12:904-915
|
CSCD被引
3
次
|
|
|
|
|