气流速度对Ti_3Al基合金摩擦起燃行为的影响
Influence of airflow velocity on friction ignition behavior of Ti_3Al-based alloy
查看参考文献22篇
文摘
|
采用高温、高速摩擦点燃法研究Ti_3Al基合金在220~380 m/s气流环境中的起燃行为,结合理论计算分析气流速度对表面氧浓度、氧化控制步骤的影响,探讨气流速度对起燃行为的影响机理。结果表明:当气流速度达到240 m/s时, Ti_3Al基合金开始发生起燃;当气流速度达到360 m/s时,Ti_3Al基合金不再发生起燃。低气流速度下,高温下的表面氧浓度低于临界值,氧化反应控制步骤由低温下的化学动力学过程转变为高温下的氧向合金表面的扩散过程。随着气流速度的加快,虽然对流散热速率增大,但表面氧浓度增大引起的氧化产热速率的增大速率比对流散热速率的大,使得升温速率增大,促进Ti_3Al基合金发生起燃。高气流速度下,高温下的表面氧浓度仍然高于临界值,氧化反应控制步骤始终是化学动力学过程。随着气流速度的增大,高温下的氧化产热速率增大速率比对流散热速率的小,使得升温速率减小,不利于Ti_3Al基合金发生起燃。 |
其他语种文摘
|
The ignition behavior of Ti_3Al-based alloy in 220-380 m/s gas flow environment was studied by using friction ignition method. Combined with numerical calculations, the influence of airflow velocity on surface oxygen concentration and oxidation control step was analyzed, and then the influence of airflow velocity on ignition behavior was discussed. The results show that the Ti_3Al-based alloy begins to ignite when the airflow velocity reaches 240 m/s. When the airflow velocity reaches 360 m/s, the Ti_3Al-based alloy no longer ignites. Under low airflow velocity conditions, the surface oxygen concentration at high temperature is lower than the critical value, and the oxidation reaction control step changes from the chemical kinetics process at low temperature to the diffusion process of oxygen to the alloy surface at high temperature. As the airflow velocity increases, although the convective heat dissipation rate increases, the increase rate of the oxidation heat generation rate caused by the increase of the surface oxygen concentration is greater than that of convective heat dissipation rate, which increases the heating rate and promotes the ignition of Ti_3Al-based alloy. Under high airflow velocity conditions, the surface oxygen concentration at high temperature is still higher than the critical value, and the control step of the oxidation reaction is always the chemical kinetics process. At this time, with the increase of airflow velocity, the increase rate of oxidation heat generation rate at high temperature is smaller than that of convective heat dissipation rate, resulting in a decrease in heating rate, which is not conducive to the ignition of Ti_3Al-based alloy. |
来源
|
材料工程
,2024,52(5):17-25 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000457
|
关键词
|
Ti_3Al基合金
;
气流速度
;
摩擦起燃
;
机理
;
钛火
|
地址
|
1.
中国航发北京航空材料研究院, 先进钛合金航空科技重点实验室, 北京, 100095
2.
清华大学新材料国际研发中心, 北京, 100084
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金“叶企孙”科学基金
;
国家重大科技专项
|
文献收藏号
|
CSCD:7723546
|
参考文献 共
22
共2页
|
1.
Jiang B. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance.
Journal of Materials Science and Technology,2019,35(6):1008-1016
|
CSCD被引
4
次
|
|
|
|
2.
Ouyang P X. Non-isothermal oxidation behaviors and mechanisms of Ti-Al intermetallic compounds.
Materials,2019,12(13):2114
|
CSCD被引
4
次
|
|
|
|
3.
Singla A K. Selective laser melting of Ti_6Al_4V alloy:process parameters,defects and posttreatments.
Journal of Manufacturing Processes,2021,64:161-187
|
CSCD被引
18
次
|
|
|
|
4.
弭光宝. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征.
物理学报,2016,65(5):056103
|
CSCD被引
12
次
|
|
|
|
5.
陈永楠. 合金元素对典型阻燃钛合金燃烧行为的影响.
稀有金属材料与工程,2019,48(11):3608-3614
|
CSCD被引
4
次
|
|
|
|
6.
梁贤烨. 航空发动机钛火特性理论计算研究.
航空材料学报,2021,41(6):59-67
|
CSCD被引
5
次
|
|
|
|
7.
Shao L. Combustion behavior and mechanism of Ti-25V-15Cr compared to Ti-6Al-4V alloy.
Corrosion Science,2022,194:109957
|
CSCD被引
5
次
|
|
|
|
8.
Mi G B. Non-isothermal oxidation and ignition prediction of Ti-Cr alloys.
Transactions of Nonferrous-Metals Society of China,2012,22(10):2409-2415
|
CSCD被引
15
次
|
|
|
|
9.
Xiang J M. Thermodynamic and microstructural study of Ti_2AlNb oxides at 800℃.
Scientific Reports,2018,8(1):12761
|
CSCD被引
3
次
|
|
|
|
10.
Chen J. Oxidation mechanisms of an intermetallic alloy at high temperatures.
Scripta Materialia,2021,199:113852
|
CSCD被引
3
次
|
|
|
|
11.
Maurice V. XPS study of the initial stages of oxidation of α2-Ti_3Al and γ-TiAl intermetallic alloys.
Acta Materialia,2007,55(10):3315-3325
|
CSCD被引
19
次
|
|
|
|
12.
Wu J S. The individual effects of niobium and silicon on the oxidation behaviour of Ti_3Al based alloys.
Intermetallics,2000,8(1):19-28
|
CSCD被引
6
次
|
|
|
|
13.
Park Y H. Oxidation behavior of Ti_3Al_xNb(x=0,3,7,11,13 at%) at 1073-1273 K in air.
Materials Transactions,JIM,2000,41(10):1297-1302
|
CSCD被引
1
次
|
|
|
|
14.
栾新刚. C/SiC复合材料在航空发动机环境中损伤机理研究.
航空制造技术,2014,57(6):93-99
|
CSCD被引
2
次
|
|
|
|
15.
Efimov B G. Effect of air flow on titanium plate combustion.
Combustion, Explosion and Shock Waves,1989,25(2):158-162
|
CSCD被引
1
次
|
|
|
|
16.
Dai J. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review.
Journal of Alloys and Compounds,2016,685:784-798
|
CSCD被引
50
次
|
|
|
|
17.
弭光宝. 航空发动机用TC11钛合金抗点燃性能及机理研究.
航空材料学报,2014,34(4):83-91
|
CSCD被引
15
次
|
|
|
|
18.
弭光宝. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析.
金属学报,2014,50(5):575-586
|
CSCD被引
26
次
|
|
|
|
19.
Bolobov V I. Effect of heat transfer conditions on the critical pressure of metal ignition in oxygen.
Combustion,Explosion, and Shock Waves,2016,52(2):172-176
|
CSCD被引
1
次
|
|
|
|
20.
Bolobov V I. Theory of ignition of metals at fracture.
Combustion, Explosion,and Shock Waves,2012,48(6):689-793
|
CSCD被引
2
次
|
|
|
|
|