帮助 关于我们

返回检索结果

湖冰遥感研究进展
Advances in lake ice monitoring methods based on remote sensing technology

查看参考文献118篇

童洁 1,2   高永年 2   詹鹏飞 1,3   宋春桥 1 *  
文摘 湖冰作为冰冻圈的重要组成部分,是反映全球气候变化最为直观的指示器之一。在气候变暖和人类活动加剧影响的背景下,全球湖泊冰情总体呈现冻结时间推迟、消融时间提前、冰期缩短、冰厚减薄等趋势特征。由于现场勘测的局限性,遥感技术在湖冰监测中发挥了越来越重要的作用。已有大量研究利用不同的遥感传感器、采用不同的湖冰参数与冰情物候特征对湖冰及其响应气候变化特征开展研究。本文首先结合国内外湖冰遥感监测现状,综述了湖冰监测常用的遥感数据源;再从湖冰范围识别方法、湖冰物候和冰厚参数遥感反演3方面展开论述,并重点总结了当前湖冰研究热点区域及冰情变化趋势;最后,结合当前遥感技术的发展,探讨了未来多源遥感技术集成在湖冰监测中的应用潜力,以及对气候变化响应十分敏感的青藏高原地区湖冰研究的挑战。
其他语种文摘 Lake ice is not only an important part of the cryosphere but also one of the most direct indicators of global climate change. In the context of climate warming and intensified human activities, global lake ice presents a trend of delayed freeze onset date, advanced break onset date, shortened ice cover duration, and thinning ice thickness. This trend tends to last for a long time. Consequently, a series of chain reactions of lake physical hydrology, hydrochemistry, and ecosystem will inevitably be triggered, further heaving the burden of natural environment and habitat construction. Therefore, it is necessary to perform fine-scale monitoring and scientific analysis of spatiotemporal patterns on lake ice variations for further predicting the early warning of global climate change. Toward overcoming the limitation of in-situ surveys, remote sensing technique comes to play a significant role in lake ice monitoring, which can provide large-scale, long time series, and high temporal resolution data for lake ice research. Previous efforts always focus on lake ice and its response to climate change using different remote sensing sensors, parameters, and characteristics. Through reviewing pioneering research, this study presents a general review on the remote sensing data source and methods for lake ice studies as well as spatial and temporal variations of lake ice in global hotspots. This paper first reviews the development of the commonly used remote sensing data sources for lake ice monitoring, which include spaceborne and airborne remote sensing platforms and existing lake ice data products. Then, the methods of lake ice identification and retrieval of lake ice phenology and ice thickness parameters are compared and discussed. Threshold and index-based methods are commonly used in lake ice research. According to the previous studies, this review likewise summaries the research hotspots of lake ice and analyzes the spatial and temporal characteristics of lake ice variations. The research hotspots are mostly distributed in the Northern hemisphere, especially in Northern Europe, North America, and the Tibetan Plateau. In addition, influencing factors of lake ice variations, including climate factors and lake shape attributes, are discussed in this study. Finally, future development directions of lake ice study by remote sensing are discussed as follows: (1) to fully integrate multiple satellite data at medium and high spatial resolution to improve the accuracy of lake ice observations, particularly for small-and medium-sized lakes; (2) to reconstruct the long time series of lake ice phenology and thickness information and predict their future changes based on techniques such as big earth data and machine learning methods; and (3) to focus more on the research of past, present, and future of lake ice variation characteristics in the Tibetan Plateau, which is rather sensitive to climate change and remains largely unexplained. Remote sensing is an effective tool to monitor the variations of lake ice, yet what we should do imperatively is to advance the scientific understanding on climate change impacts and take immediate actions.
来源 遥感学报 ,2024,28(3):541-557 【核心库】
DOI 10.11834/jrs.20232447
关键词 湖冰 ; 湖冰物候 ; 冰厚 ; 遥感监测 ; 气候变化
地址

1. 中国科学院南京地理与湖泊研究所, 中国科学院流域地理学重点实验室, 南京, 210008  

2. 河海大学地球科学与工程学院, 南京, 211100  

3. 中国科学院大学, 北京, 100049

语种 中文
文献类型 综述型
ISSN 1007-4619
学科 测绘学
基金 中国科学院战略性先导科技专项 ;  第二次青藏高原综合科学考察研究
文献收藏号 CSCD:7688316

参考文献 共 118 共6页

1.  Arcone S A. Airborne river-ice thickness profiling with helicopter-borne UHF short-pulse radar. Journal of Glaciology,1987,33(115):330-340 CSCD被引 5    
2.  Beckers J F. Retrievals of lake ice thickness from Great Slave Lake and Great Bear Lake using CryoSat-2. IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3708-3720 CSCD被引 5    
3.  Brown L C. The response and role of ice cover in lake-climate interactions. Progress in Physical Geography: Earth and Environment,2010,34(5):671-704 CSCD被引 23    
4.  Brown L C. A comparison of simulated and measured lake ice thickness using a Shallow Water Ice Profiler. Hydrological Processes,2011,25(19):2932-2941 CSCD被引 1    
5.  Brown L C. The fate of lake ice in the North American Arctic. The Cryosphere,2011,5(4):869-892 CSCD被引 5    
6.  Brown L C. Modelling lake ice phenology with an examination of satellite-detected subgrid cell variability. Advances in Meteorology,2012,2012:529064 CSCD被引 1    
7.  Cai Y. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Science of the Total Environment,2017,607/608:120-131 CSCD被引 20    
8.  Cai Y. Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. Journal of Geophysical Research: Atmospheres,2019,124(2):825-843 CSCD被引 22    
9.  Caldwell T J. Drivers and projections of ice phenology in mountain lakes in the western United States. Limnology and Oceanography,2021,66(3):995-1008 CSCD被引 3    
10.  曹梅盛. 冰冻圈遥感,2006 CSCD被引 32    
11.  曹晓卫. 乌梁素海湖冰生消过程观测与模拟研究. 博士,2021 CSCD被引 1    
12.  Cavalieri D J. Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager. Journal of Geophysical Research: Oceans. C,1991,96(C12):21989-22008 CSCD被引 12    
13.  陈贤章. 青藏高原湖冰及其遥感监测. 冰川冻土,1995,17(3):241-246 CSCD被引 24    
14.  Choinski A. Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica,2015,53:42-49 CSCD被引 5    
15.  Cretaux J F. ESA Lakes Climate Change Initiative (Lakes_cci): lake products, Version 1.0,2020 CSCD被引 1    
16.  Dauginis A A. Recent changes in Pan-Arctic sea ice, lake ice, and snow-on/off timing. The Cryosphere,2021,15(10):4781-4805 CSCD被引 1    
17.  Dibike Y. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. International Journal of Climatology,2012,32(5):695-709 CSCD被引 8    
18.  Dibike Y. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrological Processes,2011,25(19):2942-2953 CSCD被引 8    
19.  Du J Y. Satellite microwave assessment of northern hemisphere lake ice phenology from 2002 to 2015. The Cryosphere,2017,11(1):47-63 CSCD被引 11    
20.  Duguay C R. Remote sensing of lake and river ice. Remote Sensing of the Cryosphere,2015:273-306 CSCD被引 5    
引证文献 0 篇
论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号