2319铝合金电弧增材制造归一化评价
Normalized evaluation for wire arc additive manufacturing of 2319 aluminum alloy
查看参考文献33篇
文摘
|
为了对2319铝合金电弧增材制造构件各项指标做出定量化分析,拟合出不同工艺参数、试样孔隙率与抗拉强度值之间的空间曲面表达式,构建电弧增材制造“工艺-组织-性能”对应法则。基于广义模糊合成运算法则,建立工艺参数、组织缺陷和力学性能之间的归一化模糊评定模型,获取2319铝合金电弧增材制造最优工艺参数。结果表明:随着送丝速度增加,孔隙率基本呈上升趋势;随着扫描速度的降低,孔隙率基本呈下降的趋势。当扫描速度为0.035 m/s时,孔隙率与抗拉强度的关联性最低,拟合曲线的决定系数(coefficient of determination,COD)仅为0.6。当送丝速度为5.0 m/min且扫描速度为0.025 m/s时,专家综合评分值最高,说明该工艺参数组合最优。 |
其他语种文摘
|
To analyze quantitatively various indexes of wire arc additive manufacturing components of 2319 aluminum alloy, the expressions of curved surface between different process parameters, porosity and tensile strength values were fitted, and the “process-structure-property” corresponding rule was established. In addition, a normalized fuzzy evaluation model was developed for process parameters, organizational defects, and mechanical properties using the generalized fuzzy synthesis operation rule. The purpose of this model was to obtain the optimal process parameters. The results show that the porosity generally increases with the wire feeding speed rising. Then the porosity generally decreases with a decrease in scanning speed. When the scanning speed is 0.035 m/s, the correlation between porosity and tensile strength is the lowest, with a correlation coefficient (coefficient of determination,COD) of only 0.6. The comprehensive evaluation score of the expert is the highest when the wire feeding speed is 5.0 m/min and the scanning speed is 0.025 m/s, indicating that this combination of process parameters is optimal. |
来源
|
材料工程
,2024,52(3):137-148 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000197
|
关键词
|
电弧增材制造
;
2319铝合金
;
对应法则
;
归一化评价
|
地址
|
1.
南京航空航天大学材料科学与技术学院, 南京, 211106
2.
航空工业成都飞机工业(集团)有限责任公司, 成都, 610073
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
基础研究计划
|
文献收藏号
|
CSCD:7686367
|
参考文献 共
33
共2页
|
1.
李权. 航空航天轻质金属材料电弧熔丝增材制造技术.
航空制造技术,2018,61(3):74-89
|
CSCD被引
43
次
|
|
|
|
2.
刘大响. 大型飞机发动机的发展现状和关键技术分析.
航空动力学报,2008,23(6):976-980
|
CSCD被引
29
次
|
|
|
|
3.
韩启飞. 电弧熔丝增材制造铝合金研究进展.
材料工程,2022,50(4):62-73
|
CSCD被引
17
次
|
|
|
|
4.
Abdulhameed O. Additive manufacturing:challenges,trends,and applications.
Advances in Mechanical Engineering,2019,11(2):1-27
|
CSCD被引
10
次
|
|
|
|
5.
江宏亮. 丝材电弧增材制造技术的研究现状与应用.
热加工工艺,2018,47(18):25-29
|
CSCD被引
7
次
|
|
|
|
6.
王庭庭. 丝材电弧增材制造技术研究现状及展望.
电焊机,2017,47(8):60-64
|
CSCD被引
6
次
|
|
|
|
7.
Cunningham C R. Invited review article:strategies and processes for high quality wire arc additive manufacturing.
Additive Manufacturing,2018,22:672-686
|
CSCD被引
41
次
|
|
|
|
8.
胡彪. 冷金属过渡电弧增材制造技术研究进展.
机电工程,2022,39(3):375-381
|
CSCD被引
4
次
|
|
|
|
9.
Lockett H. Design for wire + arc additive manufacture:design rules and build orientation selection design for wire + arc additive manufacture:design rules and build orientation selection.
Journal of Engineering Design,2018,28:568-598
|
CSCD被引
1
次
|
|
|
|
10.
Ding D. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part.
Computer-Aided Design,2016,73:66-75
|
CSCD被引
13
次
|
|
|
|
11.
Williams S W. Wire arc additive manufacturing.
Materials Science and Technology,2016,32(7):641-647
|
CSCD被引
86
次
|
|
|
|
12.
张铂洋. 铝合金电弧增材制造研究现状.
表面技术,2023,52(11):1-24
|
CSCD被引
1
次
|
|
|
|
13.
郭亚轩. 5B06铝合金电弧增材制造工艺参数对成形质量的影响.
焊接技术,2018,47(1):25-28
|
CSCD被引
3
次
|
|
|
|
14.
Fang X. Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold Metal transfer process.
Materials,2018,11(5):812
|
CSCD被引
7
次
|
|
|
|
15.
从保强. CMT工艺对Al-Cu合金电弧增材制造气孔的影响.
稀有金属材料与工程,2014,43(12):3149-3153
|
CSCD被引
20
次
|
|
|
|
16.
Cong B. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy.
International Journal of Advanced Manufacturing Technology,2015,76:1593-1606
|
CSCD被引
42
次
|
|
|
|
17.
Gu J. Design and cracking susceptibility of additively manufactured Al-Cu-Mg alloys with tandem wires and pulsed arc.
Journal of Materials Processing Technology,2018,262:210-220
|
CSCD被引
10
次
|
|
|
|
18.
李权. 工艺参数对电弧增材制造2219铝合金微气孔缺陷的影响分析.
宇航材料工艺,2022,52(2):129-133
|
CSCD被引
4
次
|
|
|
|
19.
Ryan E M. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminum alloy 2319.
Journal of Materials Processing Technology,2018,262:577-584
|
CSCD被引
14
次
|
|
|
|
20.
Kobayashi M. Effect of local volume fraction of microporosity on tensile properties in Al-Si-Mg cast alloy.
Materials Science and Technology,2010,26(8):962-967
|
CSCD被引
5
次
|
|
|
|
|