激光增材制造高温合金原位增强钛合金复合材料的组织与力学性能
Microstructure and mechanical properties of superalloy in-situ reinforced titanium alloy composites by laser additive manufacturing
查看参考文献29篇
文摘
|
采用激光选区熔化成形(selective laser melting,SLM)技术制备TCGH(TC4+GH4169)复合材料,探究TCGH钛合金复合材料的最佳成形工艺参数,并研究沉积态试样和热处理试样的显微组织与力学性能。结果表明:TCGH钛合金复合材料的最佳工艺参数为扫描速率900 mm/s、激光功率150 W,致密度达到99.5%以上。GH4169粉末的添加改变了TC4钛合金材料的固态相变行为,沉积态组织呈现明显高温凝固特征,使得逐行扫描搭接和逐层扫描堆积成形特征变得明显,沿打印方向原始粗大柱状β晶粒尺寸明显减小,复合材料抗拉强度提升。与沉积态试样相比,950 ℃热处理后,试样显微组织转变为近等轴组织,同时随着热处理温度上升,第二相的回溶导致复合材料的固溶强化作用占主导地位,使得复合材料抗拉强度和塑性均得到提升。 |
其他语种文摘
|
TCGH(TC4+GH4169)composite material was prepared by selective laser melting(SLM). The optimum forming process parameters of TCGH composite material were investigated,and the microstructure and mechanical properties of as-deposited samples and heat-treated samples were studied. The results show that the optimum process parameters for fabrication of TCGH composite material are scanning speed of 900 mm/s with laser power of 150 W, and density higher than 99.5%. The addition of GH4169 powder changes the solid phase transformation behavior of TC4 titanium alloy material,and the as-deposited structure shows obvious high temperature solidification characteristics,which makes the forming characteristics of progressive scanning overlap and layer-by-layer scanning accumulation obvious. The original coarse columnar β grain size along the printing direction is significantly reduced, and the tensile strength of the composite is improved. Compared with the as-deposited sample,the microstructure of the heat-treated sample is transformed into a near-equiaxed structure. At the same time,with the increase of heat treatment temperature,the dissolution of the second phase leads to the dominant solid solution strengthening effect of the composite material,which improves the tensile strength and plasticity of the composite material. |
来源
|
材料工程
,2024,52(3):33-43 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000378
|
关键词
|
激光选区熔化
;
TC4复合材料
;
GH4169
;
热处理
|
地址
|
1.
中国科学技术大学材料科学与工程学院, 沈阳, 110016
2.
中国科学院金属研究所, 师昌绪先进材料创新中心, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金资助项目
;
中国科学院创新交叉团队项目
|
文献收藏号
|
CSCD:7686356
|
参考文献 共
29
共2页
|
1.
赵永庆. 国内外钛合金研究的发展现状及趋势.
中国材料进展,2010,29(5):1-8
|
CSCD被引
81
次
|
|
|
|
2.
彭艳萍. 国外航空钛合金的发展应用及其特点分析.
材料工程,1997(10):3-6
|
CSCD被引
41
次
|
|
|
|
3.
蔡建明. 航空发动机用先进高温钛合金材料技术研究与发展.
材料工程,2016,44(8):1-10
|
CSCD被引
60
次
|
|
|
|
4.
金和喜. 航空用钛合金研究进展.
中国有色金属学报,2015,25(2):280-292
|
CSCD被引
177
次
|
|
|
|
5.
陈航. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响.
材料工程,2019,47(9):38-45
|
CSCD被引
4
次
|
|
|
|
6.
耿林. 钛合金表面上两种镍基合金粉的激光熔覆研究.
材料工程,2005(12):45-47
|
CSCD被引
6
次
|
|
|
|
7.
张鸿滨. 车削和铣削加工表面塑性变形对TC4试件疲劳性能的影响.
表面技术,2023,52(2):35-42
|
CSCD被引
1
次
|
|
|
|
8.
王晓琴.
钛合金Ti6Al4V高效切削刀具摩擦磨损特性及刀具寿命研究,2009
|
CSCD被引
3
次
|
|
|
|
9.
Thijs L. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V.
Acta Materialia,2010,58(9):3303-3312
|
CSCD被引
198
次
|
|
|
|
10.
Yap C Y. Review of selective laser melting: materials and applications.
Applied Physics Reviews,2015,2(4):041101
|
CSCD被引
103
次
|
|
|
|
11.
Thijs L. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder.
Acta Materialia,2013,61(5):1809-1819
|
CSCD被引
133
次
|
|
|
|
12.
姜沐池. 激光扫描速度对Ti-Ni形状记忆合金影响规律研究.
稀有金属材料与工程,2023,52(4):1455-1463
|
CSCD被引
2
次
|
|
|
|
13.
Vrancken B. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting.
Acta Materialia,2014,68:150-158
|
CSCD被引
56
次
|
|
|
|
14.
Sui S. Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti-6Al-4V.
International Journal of Extreme Manufacturing,2022,4(3):035102
|
CSCD被引
15
次
|
|
|
|
15.
Zhang T. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing.
Science,2021,374(6566):478-482
|
CSCD被引
25
次
|
|
|
|
16.
Xiong Z. Hierarchical refinement of nickel-microalloyed titanium during additive manufacturing.
Scripta Materialia,2021,195:113727
|
CSCD被引
5
次
|
|
|
|
17.
Mandarim-De-Lacerda C A. Stereological tools in biomedical research.
Anais da Academia Brasileira de Ciencias,2003,75(4):469-486
|
CSCD被引
2
次
|
|
|
|
18.
Zhang B. Defect Formation Mechanisms in Selective Laser Melting: A Review.
Chinese Journal of Mechanical Engineering,2017,30(3):515-527
|
CSCD被引
60
次
|
|
|
|
19.
Gunenthiram V. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process.
Journal of Materials Processing Technology,2018,251:376-386
|
CSCD被引
13
次
|
|
|
|
20.
Chen L Y. Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting.
Materials Science and Engineering: A,2017,682:389-395
|
CSCD被引
13
次
|
|
|
|
|