结合最近邻图模型的稀疏ISAR成像方法
Sparse ISAR Imaging Combined with Nearest Neighbor Graph Model
查看参考文献25篇
文摘
|
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果. 稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然稀疏特性着重刻画点状特征,变换域稀疏表示可增强目标图像的纹理等通用特征. 通过学习获得的稀疏变换字典,可自适应于待成像的ISAR目标场景,找到面向ISAR目标图像块的特有稀疏表示. 但是,图像块的特有稀疏表示中忽略了待成像目标场景中目标的几何特征信息. 最近邻图模型可建立给定数据的几何特征描述算子,刻画出给定数据的几何特征信息. 本文利用最近邻图模型来刻画待成像目标场景中目标的几何特征信息,并映射到待成像目标场景的特有稀疏表示中;提出结合最近邻图模型的ISAR稀疏成像方法,用于不同类别实测ISAR数据成像. 相比已有的ISAR稀疏成像方法,所提成像方法可获得目标轮廓更清晰的成像结果,成像所需时间平均减少10.4%. |
其他语种文摘
|
Inverse synthetic aperture radar (ISAR)sparse imaging methods can provide the imaging results with high image contrast and less sidelobe interference. The premise of sparse imaging is that the scatterers distribution of the scene or target to be imaged is sparse, which means that the final imaging quality is determined by the sparse feature of the target or scene to be imaged. The natural sparsity of ISAR target scenes emphasize point-like features, and the sparse representations of to be imaged target scene in the transform domains can enhance general features (e.g., texture or contour features)of the target. The well learned sparse transformation dictionaries can adapt to the to be imaged target scenes and find their unique sparse representations. However, the image patches oriented sparse representations ignore the geometric feature of target to be imaged. The nearest neighbor graph model is able to establish the geometric feature description operator of the given data, which can be used for describing the geometric feature information of the given data. In this paper, we introduce the nearest neighbor graph model (NNGM)into ISAR sparse imaging to express the geometric feature of the to be imaged target. The NNGM of the to be imaged target is then used as the regularization term and mapped to ISAR sparse imaging model. We propose an ISAR sparse imaging method combined with the NNGM for the imaging of different types of real ISAR data. Compared with the existing ISAR sparse imaging methods, the proposed imaging method can provide the imaging result with clearer contour, and the imaging time is reduced by 10.4% on average. |
来源
|
电子学报
,2024,52(1):170-180 【核心库】
|
DOI
|
10.12263/DZXB.20221326
|
关键词
|
逆合成孔径雷达
;
稀疏成像
;
最近邻图模型
;
稀疏表示
;
字典学习
|
地址
|
1.
无锡学院电子信息工程学院, 江苏, 无锡, 214000
2.
南京航空航天大学, 雷达成像与微波光子教育部重点实验室, 江苏, 南京, 210016
3.
无锡学院自动化学院, 江苏, 无锡, 214000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
江苏省双创博士人才项目
;
江苏省高等学校基础科学(自然科学)研究面上项目
;
无锡市创新创业资金"太湖之光"科技攻关计划(基础研究)项目
|
文献收藏号
|
CSCD:7684231
|
参考文献 共
25
共2页
|
1.
Prickett M J. Principles of inverse synthetic aperture radar ISAR imaging.
IEEE Electronics and Aerospace Systems Conference,1980:340-345
|
CSCD被引
3
次
|
|
|
|
2.
Chen V C.
Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications,2014
|
CSCD被引
6
次
|
|
|
|
3.
Geng M M. Implementation of GPU-based iterative shrinkage-thresholding algorithm in sparse microwave imaging.
2012 IEEE International Geoscience and Remote Sensing Symposium,2013:3863-3866
|
CSCD被引
1
次
|
|
|
|
4.
Cetin M. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization.
IEEE Transactions on Image Processing: a Publication of the IEEE Singnal Processing Society,2001,10(4):623-631
|
CSCD被引
66
次
|
|
|
|
5.
汪玲. 空间目标卡尔曼滤波稀疏成像方法.
电子与信息学报,2018,40(4):846-852
|
CSCD被引
8
次
|
|
|
|
6.
徐宗本. 基于L1/2正则化理论的稀疏雷达成像.
科学通报,2018,63(14):1306-1319
|
CSCD被引
4
次
|
|
|
|
7.
Hasankhan M J. Sparse representation-based algorithm for joint SAR image formation and autofocus.
Signal, Image and Video Processing,2017,11(4):589-596
|
CSCD被引
2
次
|
|
|
|
8.
Bi H. Complex-image-based sparse SAR imaging and its equivalence.
IEEE Transactions on Geoscience and Remote Sensing,2018,56(9):5006-5014
|
CSCD被引
6
次
|
|
|
|
9.
Samadi S. Sparse representation-based synthetic aperture radar imaging.
IET Radar, Sonar & Navigation,2011,5(2):182-193
|
CSCD被引
24
次
|
|
|
|
10.
Wang L. Sparse ISAR imaging using a greedy Kalman filtering approach.
Signal Processing,2017,138:1-10
|
CSCD被引
7
次
|
|
|
|
11.
Donoho D L. Compressed sensing.
IEEE Transactions on Information Theory,2006,52(4):1289-1306
|
CSCD被引
3064
次
|
|
|
|
12.
Baraniuk R. Compressive radar imaging.
2007 IEEE Radar Conference,2007:128-133
|
CSCD被引
18
次
|
|
|
|
13.
胡长雨. 结合字典学习技术的ISAR稀疏成像方法.
电子与信息学报,2019,41(7):1735-1742
|
CSCD被引
6
次
|
|
|
|
14.
Hu C Y. Inverse synthetic aperture radar sparse imaging exploiting the group dictionary learning.
Remote Sensing,2021,13(14):2812-2833
|
CSCD被引
2
次
|
|
|
|
15.
Belkin M. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation,2003,15(6):1373-1396
|
CSCD被引
574
次
|
|
|
|
16.
Liu X M. Progressive image denoising through hybrid graph Laplacian regularization: A unified framework.
IEEE Transactions on Image Processing,2014,23(4):1491-1503
|
CSCD被引
4
次
|
|
|
|
17.
Zheng M. Graph regularized sparse coding for image representation.
IEEE Transactions on Image Processing,2011,20(5):1327-1336
|
CSCD被引
46
次
|
|
|
|
18.
Tang Y B. Image denoising via graph regularized K-SVD.
2013 IEEE International Symposium on Circuits and Systems (ISCAS),2013:2820-2823
|
CSCD被引
2
次
|
|
|
|
19.
Yankelevsky Y. Dual graph regularized dictionary learning.
IEEE Transactions on Signal and Information Processing over Networks,2016,2(4):611-624
|
CSCD被引
2
次
|
|
|
|
20.
Sha L D. Dual graph regularized sparse coding for image representation.
2017 IEEE Visual Communications and Image Processing (VCIP),2018:1-4
|
CSCD被引
1
次
|
|
|
|
|