软体机器人动力学建模与计算研究进展
Research Progress on the Modeling and Computation of Soft Robotic Dynamics
查看参考文献111篇
文摘
|
由刚性结构制成的传统机器人存在灵活性差、环境适应能力低、人机交互不友好等缺点,而近些年受自然界生物启发研制的各类软体机器人则可克服这些缺点,但由于具有无限自由度,软体机器人的优化设计与在线控制尚面临诸多瓶颈.通过力学建模与数值仿真,则能够更好地理解其形变过程,进而指导软体机器人的设计与制造.本文聚焦最新的软体机器人动力学仿真研究,关注结构建模方法和交互仿真方法在理论计算中的应用.在结构建模方法中,从三维实体单元模型出发,介绍有限元方法的基本原理及其在静态模型、可微框架和可微投影动力学等策略中的应用;在板壳模型方面,探讨经典的基尔霍夫-勒夫板壳模型和离散壳模型.接着在结构建模中聚焦简化模型,包括基于一维降阶模型的细长结构仿真,其中涵盖了分段常曲率模型、Cosserat杆模型和绝对节点坐标方法等基本模型理论.通过典型工作的案例,探讨了一维简化模型的优势与缺点,并介绍了质量弹簧阻尼经典模型的操作方法以及最新的相关工作.在交互仿真技术中,围绕动力学仿真,涵盖外部环境交互和外场驱动交互两个方面,探讨了软体机器人动力学仿真中的挑战与应对策略.此项工作旨在为机器人开发者提供全新的动力学仿真思路,实现更逼真的仿真效果,进而为软体机器人的优化设计及在线控制提供理论支撑. |
其他语种文摘
|
Traditional robots comprised of rigid components are usually hard to adapt to different environment and would be dangerous when interacting with humans. Inspired by nature, soft robots exhibit exceptional flexibility and adaptability. However, due to their numerous degrees of freedom, optimizing and controlling soft robots pose challenges. Mechanics-based modeling and numerical simulation offer insights into guiding soft robot design and manufacturing. This article focuses on recent advances in soft robot dynamic simulation, emphasizing structural modeling methods and interactive simulation methods in theoretical calculations. For structural modeling methods, we begin with three-dimensional models, by introducing the static models, deformable frameworks, and differentiable projected dynamics. Moving on to plate and shell models, we explore the classic Kirchhoff-Love plate models and discrete shell models. Then, we delve into simplified models, covering basic model theories such as piecewise constant curvature model, Cosserat rod models, and absolute nodal coordinate methods. We also introduce the central parameter models, which are widely used for physical modeling. Case studies of exemplary works help investigate the advantages and limitations of these simplified models. In the interactive simulation techniques, focusing on the dynamic simulations, we integrate previous sections on the interaction models, discussing external environmental interaction and external field-driven interaction. We address challenges and strategies in the dynamic simulations of soft robots. Our aim is to provide novel dynamic simulation approaches to robotic developers, enhancing simulation accuracy and providing theoretical support for optimized design and online control of soft robots. |
来源
|
力学季刊
,2024,45(1):1-18 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2024.01.001
|
关键词
|
软体机器人
;
动力学仿真
;
有限元
;
简化模型
;
交互模型
|
地址
|
东南大学机械工程学院, 江苏, 南京, 211189
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0254-0053 |
学科
|
力学 |
基金
|
江苏省自然科学基金
|
文献收藏号
|
CSCD:7683857
|
参考文献 共
111
共6页
|
1.
Wang C. A snake-inspired multi-segmented magnetic soft robot towards medical applications.
IEEE Robotics and Automation Letters,2022,7:5795-5802
|
CSCD被引
3
次
|
|
|
|
2.
Wu Q. A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus.
Bioinspiration & Biomimetics,2021,16:046007
|
CSCD被引
2
次
|
|
|
|
3.
Daily-Diamond C A. Dynamical analysis and development of a biologically inspired SMA caterpillar robot.
Bioinspiration & Biomimetics,2017,12:056005
|
CSCD被引
1
次
|
|
|
|
4.
Chang E. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
Science Robotics,2020,38(5):eaay1246
|
CSCD被引
1
次
|
|
|
|
5.
Wang Y. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish.
Science Robotics,2017,2:eaan8072
|
CSCD被引
13
次
|
|
|
|
6.
Li G. Self-powered soft robot in the Mariana Trench.
Nature,2021,591:66-71
|
CSCD被引
40
次
|
|
|
|
7.
Tang C. A pipeline inspection robot for navigating tubular environments in the subcentimeter scale.
Science Robotics,2022,7:eabm8597
|
CSCD被引
12
次
|
|
|
|
8.
Du Z. Snake-worm: a bi-modal locomotion robot.
Journal of Bionic Engineering,2022,19:1272-1287
|
CSCD被引
2
次
|
|
|
|
9.
Gu G. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback.
Nature Biomedical Engineering,2023,7:589-598
|
CSCD被引
4
次
|
|
|
|
10.
Sui M. A soft-packaged and portable rehabilitation glove capable of closed-loop fine motor skills.
Nature Machine Intelligence,2023,5:1149-1160
|
CSCD被引
1
次
|
|
|
|
11.
Li B. A flexible morphing wing by soft wing skin actuation utilizing dielectric elastomer: experiments and electro-aerodynamic model.
Smart Materials and Structures,2020,29:015031
|
CSCD被引
3
次
|
|
|
|
12.
Qin L. Modeling and simulation of dynamics in soft robotics: a review of numerical approaches.
Current Robotics Reports,2023,5:1-13
|
CSCD被引
1
次
|
|
|
|
13.
Amehri W. FEM-based exterior workspace boundary estimation for soft robots via optimization.
IEEE Robotics and Automation Letters,2022,7:3672-3678
|
CSCD被引
1
次
|
|
|
|
14.
Falkenhahn V. Dynamic modeling of bellows-actuated continuum robots using the Euler-Lagrange formalism.
IEEE Transactions on Robotics,2015,31:1483-1496
|
CSCD被引
12
次
|
|
|
|
15.
Guo N. Simulation analysis for optimal design of pneumatic bellow actuators for soft-robotic glove.
Biocybernetics and Biomedical Engineering,2020,40:1359-1368
|
CSCD被引
1
次
|
|
|
|
16.
Yang P. SpringWorm: a soft crawling robot with a large-range omnidirectional deformable rectangular spring for control rod drive mechanism inspection.
Soft Robotics,2023,10:280-291
|
CSCD被引
3
次
|
|
|
|
17.
Zhang J. Novel design of a cable-driven continuum robot with multiple motion patterns.
IEEE Robotics and Automation Letters,2022,7:6163-6170
|
CSCD被引
4
次
|
|
|
|
18.
Hu Y. Difftaichi: differentiable programming for physical simulation.
arXiv preprint arXiv:1910.00935,2019
|
CSCD被引
1
次
|
|
|
|
19.
Hu Y. Chainqueen: a real-time differentiable physical simulator for soft robotics.
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),2019:6265-6271
|
CSCD被引
1
次
|
|
|
|
20.
Huang Z. Plasticinelab: a soft-body manipulation benchmark with differentiable physics.
arXiv preprint arXiv:2104.03311,2021
|
CSCD被引
1
次
|
|
|
|
|