高精度定量相位显微成像方法研究
Research on High-Precision Quantitative Phase Microscopy Imaging Methods
查看参考文献49篇
文摘
|
定量相位显微成像在工业检测、生物医学和光场调控等领域具有重要的应用价值。常用的定量相位显微成像技术通过干涉的方法来获取相位的定量分布,干涉装置的稳定性、光学衍射极限的限制、相位再现时的解包裹问题、激光照明下的相干噪声,以及动态观测过程中的样品离焦等因素都会影响定量相位显微成像的分辨率和精度。本文围绕高精度定量相位显微成像中的上述关键问题展开研究,通过构建物参共路的同步相移数字全息显微结构实现稳定的实时测量;采用结构光照明的超分辨相位成像方法实现对微小物体的超分辨相位成像;利用双波长照明将纵向无包裹相位测量范围扩大到微米量级;使用低相干LED照明解决相干噪声问题;提出了基于结构光照明和双波长照明的数字全息显微自动调焦方法,可以满足对不同类型样品的长时间跟踪观测。 |
其他语种文摘
|
Significance Phase is one of the important attributes of light waves, and its distribution directly affects the spatial resolution of optical imaging and is related to the three-dimensional topography of objects or the refractive index distribution of transparent objects. However, the phase distribution of light waves cannot be directly detected. How to accurately obtain the phase distribution of light waves has become a hotspot in the field of optics. The invention of phasecontrast microscopy has opened the curtain of phase imaging, which has epoch-making significance. It successfully converts the phase distribution of light waves into intensity changes, solving the problem of difficult direct microscopic observation of transparent samples such as cells. Nevertheless, the conversion between phase distribution and intensity change is not a linear relationship in phase contrast microscopy, resulting in phase information that cannot be observed quantitatively. By measuring the phase of light waves, the three-dimensional topography or refractive index distribution of transparent objects can be quantitatively obtained. The refractive index is one of the essential characteristic physical quantities that reflect the internal structure and state of the sample. Therefore, conducting quantitative phase microscopy methods has scientific significance. Quantitative phase imaging has important application value in industrial detection, biomedicine, special beam generation, adaptive optics imaging, and synthetic aperture telescopes. The current quantitative phase microscopy imaging technology mainly obtains the quantitative distribution of phase through interference. Therefore, factors such as the stability of interference devices, limitations on optical diffraction, phase wrapping, coherent noise generated by laser illumination, and sample refocusing during dynamic observation affect the imaging resolution and accuracy of quantitative phase microscopy. Thus, systematic and in-depth research on improving measurement accuracy and stability, spatial resolution, expanding the longitudinal measurement range, suppressing coherent noise, and autofocusing of quantitative phase microscopy imaging has been carried out. A theoretical and technical system centered on high-precision quantitative phase microscopy imaging has been formed. Progress A simultaneous phase shift digital holographic microscopy (DHM)with a common-path configuration has been proposed, which allows the object light and reference light to share the same optical path and components, solving the impact of environmental disturbances on phase imaging fundamentally (Fig. 3), simultaneously recording multiple phaseshift interferograms within one exposure and achieving real-time high-precision quantitative phase imaging. The optical path fluctuation of the system is only 3 nm within 35 min, and the real-time phase microscopy imaging accuracy reaches 4.2 nm, which is 2.2 times the accuracy of conventional off-axis interference quantitative phase microscopy imaging (Fig. 5). A super-resolution quantitative phase imaging method based on structural illumination has been proposed. Using the structured light illumination, the spatial resolution of quantitative phase microscopy can be doubled when the spatial frequency of the structural illumination stripe is the same as the highest spatial frequency of the microscopic objective, and super-resolution phase imaging is realized (Fig. 7). A slightly off-axis interference dual-wavelength illuminated digital holographic microscopy has been proposed to expand the longitudinal unwrapped phase measurement range from the wavelength to the micrometer level (Fig. 8), meeting the high-precision phase imaging requirements of thicker samples. |
来源
|
光学学报
,2024,44(2):0200003 【核心库】
|
DOI
|
10.3788/AOS231191
|
关键词
|
定量相位显微成像
;
物参共路
;
结构光照明
;
相位解包裹
;
自动调焦
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
西安电子科技大学物理学院, 陕西, 西安, 710071
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:7683498
|
参考文献 共
49
共3页
|
1.
Nguyen T L. Quantitative phase imaging: recent advances and expanding potential in biomedicine.
ACS Nano,2022,16(8):11516-11544
|
CSCD被引
6
次
|
|
|
|
2.
Schnars U.
Digital holography: digital hologram recording, numerical reconstruction, and related techniques,2005
|
CSCD被引
5
次
|
|
|
|
3.
Kemper B. Digital holographic microscopy.
Photonics Views,2020,17(1):32-35
|
CSCD被引
1
次
|
|
|
|
4.
戴思清. 基于数字全息术的近场成像与应用.
光学学报,2020,40(1):0111008
|
CSCD被引
9
次
|
|
|
|
5.
Bai C. Dual-wavelength in-line digital holography with untrained deep neural networks.
Photonics Research,2021,9(12):2501-2510
|
CSCD被引
7
次
|
|
|
|
6.
de Groot P J. Contributions of holography to the advancement of interferometric measurements of surface topography.
Light: Advanced Manufacturing,2022,3(2):258-277
|
CSCD被引
3
次
|
|
|
|
7.
高阳子. 基于脉冲数字全息干涉术的云滴谱离散度研究.
光学学报,2022,42(6):0609001
|
CSCD被引
1
次
|
|
|
|
8.
张美娟. 多相机数字全息测量物体三维变形方法研究.
激光与光电子学进展,2022,59(16):1609001
|
CSCD被引
3
次
|
|
|
|
9.
刘雅坤. 基于数字全息显微层析的癌细胞空泡化成像研究.
中国激光,2022,49(20):2007209
|
CSCD被引
6
次
|
|
|
|
10.
Kemper B. Digital holographic microscopy for live cell applications and technical inspection.
Applied Optics,2007,47(4):A52-A61
|
CSCD被引
49
次
|
|
|
|
11.
Verpillat F. Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles.
Optics Express,2011,19(27):26044-26055
|
CSCD被引
7
次
|
|
|
|
12.
王华英. 优化的数字全息显微成像系统.
物理学报,2013,62(5):054208
|
CSCD被引
7
次
|
|
|
|
13.
Balasubramani V. Roadmap on digital holography-based quantitative phase imaging.
Journal of Imaging,2021,7(12):252
|
CSCD被引
2
次
|
|
|
|
14.
Schnars U. Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum.
Optical Engineering,1996,35(4):977-982
|
CSCD被引
12
次
|
|
|
|
15.
Liu L. Simultaneous dualwavelength off-axis flipping digital holography.
Optics Letters,2017,42(21):4331-4334
|
CSCD被引
4
次
|
|
|
|
16.
Anand A. Tutorial: common path selfreferencing digital holographic microscopy.
APL Photonics,2018,3(7):071101
|
CSCD被引
5
次
|
|
|
|
17.
Cuche E. Digital holography for quantitative phase-contrast imaging.
Optics Letters,1999,24(5):291-293
|
CSCD被引
87
次
|
|
|
|
18.
范琦. 改善数字全息显微术分辨率的几种方法.
光电子·激光,2005,16(2):226-230
|
CSCD被引
15
次
|
|
|
|
19.
Osten W. Recent advances in digital holography.
Applied Optics,2014,53(27):G44-G63
|
CSCD被引
19
次
|
|
|
|
20.
王永红. 相位解包裹技术及应用研究进展.
测控技术,2018,37(12):1-7,16
|
CSCD被引
6
次
|
|
|
|
|