起落架用高速火焰喷涂WC涂层覆盖高强钢海水环境腐蚀与开裂行为
Corrosion and cracking behavior of high strength steel covered with high-velocity oxygen-fuel spraying WC coating in marine environment
查看参考文献29篇
文摘
|
为探究水陆两栖飞机用起落架材料海洋环境适应性及其失效机制。通过在热轧300M高强钢表面制备高速火焰喷涂WC涂层,使用电化学测试、盐雾实验、拉伸实验、疲劳实验,并通过SEM,EDS,XRD以及CLSM表征,开展其在人工海水环境中的腐蚀行为研究。研究结果表明,在pH值为8.2的人工海水环境中,WC涂层发生明显的钝化,具有较好的耐蚀性,这与在碱性环境下涂层中的Co发生钝化有关。长周期电化学阻抗结果表明,浸泡28天后,涂层耐蚀性上升,这与表面黏结剂形成的氧化物有关。与300M基材相比,喷涂后的材料抗拉强度略微升高,这与涂层内部的残余应力释放有关,其在人工海水中的开裂主要受阳极溶解过程控制。随着预腐蚀时间的增加,材料的疲劳寿命发生明显降低,在预腐蚀过程中,环境中的腐蚀性介质进入涂层内部,增加了缺陷的数量,使得涂层提前发生失效,导致材料断裂敏感性增加。WC涂层有较好的耐蚀性,拉伸过程中残余应力的释放使材料的抗拉强度略微升高,经过预腐蚀后涂层提前发生失效,使得材料疲劳寿命降低。 |
其他语种文摘
|
In order to explore the adaptability and failure mechanism of landing gear materials for amphibious aircraft in the marine environment. By preparing a high-speed flame sprayed WC coating on the surface of hot-rolled 300M high-strength steel, the corrosion behavior of the coating in an artificial seawater environment was studied using electrochemical testing, salt spray testing, tensile testing, fatigue testing, and characterization by SEM, EDS, XRD, and CLSM. The research results indicate that the WC coating undergoes significant passivation and exhibits good corrosion resistance in an artificial seawater environment with pH value 8.2, which is related to the passivation of Co in the coating under alkaline conditions. The long-term electrochemical impedance results indicate that the corrosion resistance of the coating increases after soaking for 28 days, which is related to the oxide formed by the surface binder. Compared with the 300 M substrate, the tensile strength of the sprayed material slightly increases, which is related to the residual stress releasing inside the coating. Its cracking in artificial seawater is mainly controlled by the anodic dissolution process. As the pre corrosion time increases, the fatigue life of the material significantly decreases. The corrosive medium from the environment enters the interior of the coating during the pre corrosion process, which increases the number of defects, causes premature failure of the coating, and leads to an increase in material fracture sensitivity. WC coatings have good corrosion resistance, and the release of residual stress during the tensile process slightly increases the tensile strength of the material. The coating fails prematurely after pre corrosion, which results in a reduced fatigue life of the material. |
来源
|
材料工程
,2024,52(2):207-217 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000052
|
关键词
|
WC涂层
;
海水腐蚀
;
疲劳寿命
;
断裂机制
;
失效
;
残余应力
|
地址
|
1.
中国海洋大学材料科学与工程学院, 山东, 青岛, 266400
2.
中国特种飞行器研究所, 结构腐蚀防护与控制航空科技重点实验室, 湖北, 荆门, 448001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然基金联合基金重点项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7679713
|
参考文献 共
29
共2页
|
1.
赵连红. 起落架用30CrMnSiNi2A钢表面Cd-Ti镀层在海水和盐雾环境中的腐蚀行为研究.
表面技术,2022,51(5):214-222
|
CSCD被引
2
次
|
|
|
|
2.
张航. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能.
材料工程,2019,47(4):127-134
|
CSCD被引
4
次
|
|
|
|
3.
Cho J E. Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders instrong acidic environment.
Surface and Coatings Technology,2006,200(8):2653-2662
|
CSCD被引
18
次
|
|
|
|
4.
王洪涛. 冷喷涂WC-Co涂层的组织结构和性能研究.
材料工程,2013(10):29-35
|
CSCD被引
4
次
|
|
|
|
5.
杨伟华. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能.
材料工程,2018,46(5):120-125
|
CSCD被引
8
次
|
|
|
|
6.
Zhang P X. Effects of WC particletypes on the microstructures and properties of WC-reinforced Ni60composite coatings produced by laser cladding.
Metals,2019,9(5):583
|
CSCD被引
4
次
|
|
|
|
7.
Liu E. Tribocorrosion behaviors of thermal spraying WC/Ni60 coated 316L stainless steel in artificial seawater.
Industrial Lubrication and Tribology,2019,71(6):741-748
|
CSCD被引
3
次
|
|
|
|
8.
Chivavibul P. Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC-Co coatings.
Surface and Coatings Technology,2007,202(3):509-521
|
CSCD被引
24
次
|
|
|
|
9.
Lekatou A. Corrosion behaviour of cermet-based coatings with a bond coat in 0.5 M H_2SO_4.
Corrosion Science,2008,50(12):3389-3400
|
CSCD被引
2
次
|
|
|
|
10.
Picas J A. Corrosionmechanism of HVOF thermal sprayed WC-CoCr coatings inacidic chloride media.
Surface and Coatings Technology,2019,371:378-388
|
CSCD被引
1
次
|
|
|
|
11.
魏修宇. WC-Co-(Ni)-(Cr)硬质合金在中性溶液中的腐蚀行为.
稀有金属材料与工程,2020,49(1):313-319
|
CSCD被引
5
次
|
|
|
|
12.
王振强. 三种热喷涂WC-CoCr涂层的组织及腐蚀行为.
热处理技术与装备,2009,30(6):23-28
|
CSCD被引
2
次
|
|
|
|
13.
Liu Y. Corrosion behavior of thermal-sprayed WC cermet coatings in SO_4~(2-) environment.
Rare Metals,2014,33(3):318-323
|
CSCD被引
5
次
|
|
|
|
14.
Ibrahim A. Fatigue and deformation of HVOF sprayed WC-Co coatings and hard chrome plating.
Materials Science and Engineering:A,2007,456(1/2):114-119
|
CSCD被引
9
次
|
|
|
|
15.
Costa M Y P. Effect of WC-10Co-4Cr coating on the Ti-6Al-4V alloy fatigue strength.
Materials Science and Engineering: A,2009,507(1/2):29-36
|
CSCD被引
14
次
|
|
|
|
16.
Guo T. Brittle film-inducedcracking of ductile substrates.
Acta Materialia,2015,99:273-280
|
CSCD被引
9
次
|
|
|
|
17.
Uematsu Y. Improvement of corrosion fatigue strength of magnesium alloy bymultilayer diamond-like carbon coatings.
Surface and Coatings Technology,2011,205(8/9):2778-2784
|
CSCD被引
19
次
|
|
|
|
18.
Arias D F. Residual stressgradient of Cr and CrN thin films.
Materials Chemistry and Physics,2018,204:269-276
|
CSCD被引
3
次
|
|
|
|
19.
Wang Q. Influence of heat treatment on the microstructure and performance of high-velocity oxyfuelsprayed WC-12Co coatings.
Surface and Coatings Technology,2012,206(19/20):4000-4010
|
CSCD被引
8
次
|
|
|
|
20.
Marcano Z. Microstructureand adhesion of Cr3C2-NiCr vacuum plasma sprayed coatings.
Surface & Coatings Technology,2008,202(18):4406-4410
|
CSCD被引
7
次
|
|
|
|
|