碳化硅陶瓷基复合材料表面环境障涂层结合强度
Bonding strength of environmental barrier coatings on surface of SiC-based ceramic matrix composites
查看参考文献24篇
文摘
|
SiC陶瓷基复合材料(SiC-based ceramic matrix composites,SiC-CMC)是发展高推重比航空发动机理想的高温结构材料。为了防止发动机服役环境下燃气(富含H_2O和O_2)对SiC-CMC的腐蚀,需要在其表面制备抗水氧腐蚀、抗燃气冲刷和抗热冲击性能优异的环境障涂层(environmental barrier coatings,EBCs)。在评价EBCs性能的诸多因素中,其与SiC-CMC基体之间的结合强度是一个重要技术指标,但结合强度的极限值一直未被探究清楚。本工作研究影响结合强度的主要因素,包含SiC-CMC基体状态、单晶Si的拉伸强度极限,以及Si黏结层的制备工艺等,获得了制备最高结合强度的有效途径。在EBCs与SiC-CMC组成的体系中,基体内部SiC纤维布之间的界面是结合强度最薄弱的部位,其次是EBCs的Si层。整个体系的结合强度极限值是15 MPa,它是单晶Si在[400]晶向的拉伸强度极限。采用大气等离子喷涂或者超音速火焰喷涂的Si黏结层结合强度相似,均低于同样工艺制备的莫来石或Yb_2Si_2O_7涂层。 |
其他语种文摘
|
SiC-based ceramic matrix composites (SiC-CMC) are an ideal material for aeroengines with high thrust/mass ratio.In order to prevent the corrosion of SiC-CMC by gas (rich in H_2O and O_2) in the engine, it is necessary to prepare environmental barrier coatings (EBCs) with excellent water and oxygen corrosion resistance, gas erosion resistance and thermal shock resistance. Among many factors that evaluate the performance of EBCs, the bonding strength between EBCs and SiC-CMC matrix is an important indicator, but the limit value of the bonding strength has not been clearly explored. In this paper, main factors to control the bonding strength were studied in order to reach the highest value, including the SiCCMC matrix state, the tensile strength limit of single crystal Si, and the preparation process of the Si bonding layer, etc. In the SiC-CMC/EBCs system, the interface between the SiC fiber cloth is the weakest part of the bonding strength, followed by the Si bonding layer. The bonding strength limit is 15 MPa, which is the tensile strength limit of single crystal Si in the [400] crystal direction. The bonding strength of the Si layer using atmospheric plasma spraying (APS) or high velocity oxygen-fuel(HVOF) is similar, which is lower than that of mullite or Yb_2Si_2O_7 layer sprayed by the same process. |
来源
|
材料工程
,2024,52(2):198-206 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000823
|
关键词
|
碳化硅
;
复合材料
;
环境障涂层
;
结合强度
|
地址
|
1.
中国航发南方工业有限公司, 湖南, 株洲, 412002
2.
武汉理工大学, 硅酸盐建筑材料国家重点实验室, 武汉, 430070
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金“叶企孙”科学基金重点支持项目
|
文献收藏号
|
CSCD:7679712
|
参考文献 共
24
共2页
|
1.
焦健. 新一代发动机高温材料-陶瓷基复合材料的制备、性能及应用.
航空制造技术,2014(7):61-69
|
CSCD被引
1
次
|
|
|
|
2.
刘巧沐. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战.
材料工程,2019,47(2):1-10
|
CSCD被引
57
次
|
|
|
|
3.
Roode M V. Ceramic matrixcomposite combustor liners: a summary of field evaluations.
Journal of Engineering of Gas Turbines & Power,2007,129(1):21-30
|
CSCD被引
10
次
|
|
|
|
4.
Mei H. Simulated environments testing system for advanced ceramic matrix composites.
International Journal of Applied Ceramic Technology,2006,3(3):252-257
|
CSCD被引
4
次
|
|
|
|
5.
Steibel J. Ceramic matrix composites taking flight at GE aviation.
American Ceramic Society Bulletin,2019,98(3):30-33
|
CSCD被引
12
次
|
|
|
|
6.
马晓康. 碳化硅陶瓷基复合材料的自愈合及结构吸波一体化研究进展.
航空材料学报,2018,38(5):1-9
|
CSCD被引
9
次
|
|
|
|
7.
Sun K. In-situ growth carbon nanotubereinforced SiC-CMC composite.
Materials Letter,2011,66:92-95
|
CSCD被引
1
次
|
|
|
|
8.
杨瑞. 高温热暴露对Al_2O_3/Al_2O_3陶瓷基复合材料性能影响.
航空材料学报,2023,43(2):1-8
|
CSCD被引
5
次
|
|
|
|
9.
Ivekovic A. Current statusand prospects of SiC-CMC for fusion structural applications.
Journal of the European Ceramic Society,2013,33:1577-1589
|
CSCD被引
16
次
|
|
|
|
10.
Utkin A V. Multiple zirconia interphase for SiC-CMCf composites.
Surfaceand Coatings Technology,2011,205:2724-2729
|
CSCD被引
5
次
|
|
|
|
11.
刘巧沐. 碳化硅陶瓷基复合材料环境障涂层研究进展.
材料工程,2018,46(10):1-8
|
CSCD被引
20
次
|
|
|
|
12.
Lee K N. Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): a tutorial paper.
Journal of Thermal Spray Technology,2021,30:40-58
|
CSCD被引
9
次
|
|
|
|
13.
Lee K N. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics.
Journal of the European Ceramic Society,2005,25:1705-1715
|
CSCD被引
73
次
|
|
|
|
14.
Jacques S. Nanoscalemultilayered and porous carbide interphases prepared by pressurepulsedreactive chemical vapor deposition for ceramic matrix composites.
Applied Surface Science,2013,275:102-109
|
CSCD被引
3
次
|
|
|
|
15.
Valenza F. Surface engineering of SiC-CMC composites by selective thermal removal.
International Journal of Applied Ceramic Technology,2017,14(3):287-294
|
CSCD被引
2
次
|
|
|
|
16.
Richards B T. Response of ytterbium disilicate-silicon environmental barriercoatings to thermal cycling in water vapor.
Acta Materialia,2016,106:1-14
|
CSCD被引
26
次
|
|
|
|
17.
Zhai Z Y. Effect of the surfacemicrostructure ablated by femtosecond laser on the bondingstrength of EBCs for SiC/SiC composites.
Optics Communications,2018,424:137-144
|
CSCD被引
10
次
|
|
|
|
18.
Caren G. YAlO_3—anovel environmental barrier coating for Al_2O_3/Al_2O_3-ceramic matrix composites.
Coatings,2019,9(10):609
|
CSCD被引
1
次
|
|
|
|
19.
张乐. SiC_f/SiC复合材料表面Si/Yb_2Si_2O_7双层涂层结合强度分析.
表面技术,2022,51(3):199-207
|
CSCD被引
3
次
|
|
|
|
20.
罗志新. 喷涂工艺对SiC基片上制备的Si粘结层组织及性能的影响.
热喷涂技术,2021,13(4):7-13
|
CSCD被引
1
次
|
|
|
|
|